Suppr超能文献

用于组织工程的细胞外基质模拟生物粘附表面和植入物的纳米级工程。

Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering.

作者信息

Shekaran Asha, Garcia Andres J

机构信息

Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Biochim Biophys Acta. 2011 Mar;1810(3):350-60. doi: 10.1016/j.bbagen.2010.04.006. Epub 2010 May 8.

Abstract

BACKGROUND

The goal of tissue engineering is to restore tissue function using biomimetic scaffolds which direct desired cell fates such as attachment, proliferation and differentiation. Cell behavior in vivo is determined by a complex interaction of cells with extracellular biosignals, many of which exist on a nanoscale. Therefore, recent efforts in tissue engineering biomaterial development have focused on incorporating extracellular matrix- (ECM) derived peptides or proteins into biomaterials in order to mimic natural ECM. Concurrent advances in nanotechnology have also made it possible to manipulate protein and peptide presentation on surfaces on a nanoscale level.

SCOPE OF REVIEW

This review discusses protein and peptide nanopatterning techniques and examples of how nanoscale engineering of bioadhesive materials may enhance outcomes for regenerative medicine.

MAJOR CONCLUSIONS

Synergy between ECM-mimetic tissue engineering and nanotechnology fields can be found in three major strategies: (1) Mimicking nanoscale orientation of ECM peptide domains to maintain native bioactivity, (2) Presenting adhesive peptides at unnaturally high densities, and (3) Engineering multivalent ECM-derived peptide constructs.

GENERAL SIGNIFICANCE

Combining bioadhesion and nanopatterning technologies to allow nanoscale control of adhesive motifs on the cell-material interface may result in exciting advances in tissue engineering. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.

摘要

背景

组织工程的目标是使用仿生支架恢复组织功能,这些支架可引导所需的细胞命运,如附着、增殖和分化。体内细胞行为由细胞与细胞外生物信号的复杂相互作用决定,其中许多信号存在于纳米尺度。因此,组织工程生物材料开发的近期努力集中于将细胞外基质(ECM)衍生的肽或蛋白质纳入生物材料中,以模拟天然ECM。纳米技术的同步进展也使得在纳米尺度上操纵表面的蛋白质和肽呈现成为可能。

综述范围

本综述讨论蛋白质和肽纳米图案化技术,以及生物粘附材料的纳米尺度工程如何改善再生医学结果的实例。

主要结论

在三个主要策略中可以发现仿生组织工程与纳米技术领域之间的协同作用:(1)模拟ECM肽结构域的纳米尺度取向以维持天然生物活性,(2)以非自然的高密度呈现粘附肽,以及(3)设计多价ECM衍生的肽构建体。

普遍意义

结合生物粘附和纳米图案化技术,以实现对细胞-材料界面上粘附基序的纳米尺度控制,可能会在组织工程中带来令人兴奋的进展。本文是名为“纳米技术——生物医学中的新兴应用”的特刊的一部分。

相似文献

1
Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering.
Biochim Biophys Acta. 2011 Mar;1810(3):350-60. doi: 10.1016/j.bbagen.2010.04.006. Epub 2010 May 8.
2
Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix.
Biochim Biophys Acta. 2011 Mar;1810(3):339-49. doi: 10.1016/j.bbagen.2010.07.005. Epub 2010 Jul 18.
3
Amyloid Fibrils: Versatile Biomaterials for Cell Adhesion and Tissue Engineering Applications.
Biomacromolecules. 2018 Jun 11;19(6):1826-1839. doi: 10.1021/acs.biomac.8b00279. Epub 2018 May 9.
4
Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype.
Acta Biomater. 2016 Jan;30:26-48. doi: 10.1016/j.actbio.2015.11.027. Epub 2015 Nov 17.
5
Current approaches for modulation of the nanoscale interface in the regulation of cell behavior.
Nanomedicine. 2018 Oct;14(7):2455-2464. doi: 10.1016/j.nano.2017.03.020. Epub 2017 May 26.
6
Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix.
Cell Tissue Res. 2010 Jan;339(1):131-53. doi: 10.1007/s00441-009-0896-5. Epub 2009 Nov 7.
7
Extracellular matrix-mimetic adhesive biomaterials for bone repair.
J Biomed Mater Res A. 2011 Jan;96(1):261-72. doi: 10.1002/jbm.a.32979. Epub 2010 Nov 10.
9
Biomimetic nanopatterns as enabling tools for analysis and control of live cells.
Adv Mater. 2010 Nov 2;22(41):4551-66. doi: 10.1002/adma.201000468.
10
Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network.
ACS Biomater Sci Eng. 2022 Jun 13;8(6):2258-2280. doi: 10.1021/acsbiomaterials.1c01525. Epub 2022 Apr 4.

引用本文的文献

1
Lateral Spacing of TiO Nanotube Coatings Modulates In Vivo Early New Bone Formation.
Biomimetics (Basel). 2025 Jan 28;10(2):81. doi: 10.3390/biomimetics10020081.
2
Collagen type I mimicking peptide additives to functionalize synthetic supramolecular hydrogels.
Mater Today Bio. 2024 Mar 15;26:101021. doi: 10.1016/j.mtbio.2024.101021. eCollection 2024 Jun.
3
Carbon Quantum Dots for Stem Cell Imaging and Deciding the Fate of Stem Cell Differentiation.
ACS Omega. 2022 Aug 11;7(33):28685-28693. doi: 10.1021/acsomega.2c03285. eCollection 2022 Aug 23.
4
Non-thermal plasma assisted surface nano-textured carboxymethyl guar gum/chitosan hydrogels for biomedical applications.
RSC Adv. 2019 Jan 14;9(3):1705-1716. doi: 10.1039/c8ra09161g. eCollection 2019 Jan 9.
6
Graphene-Based Scaffolds for Regenerative Medicine.
Nanomaterials (Basel). 2021 Feb 5;11(2):404. doi: 10.3390/nano11020404.
7
Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation.
Adv Funct Mater. 2013 Feb 5;23(5):575-582. doi: 10.1002/adfm.201201902. Epub 2012 Sep 13.
9
Enhanced Biocompatibility in Anodic TaO Nanotube Arrays.
Nanoscale Res Lett. 2017 Oct 3;12(1):557. doi: 10.1186/s11671-017-2325-0.
10
Advances in Nanotechnology for Restorative Dentistry.
Materials (Basel). 2015 Feb 16;8(2):717-731. doi: 10.3390/ma8020717.

本文引用的文献

1
Nanopatterning proteins and peptides.
Soft Matter. 2006 Oct 17;2(11):928-939. doi: 10.1039/b611000b.
2
The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays.
Biomaterials. 2010 Apr;31(12):3156-65. doi: 10.1016/j.biomaterials.2010.01.020. Epub 2010 Feb 10.
4
Fabrication of Nanoscale Bioarrays for the Study of Cytoskeletal Protein Binding Interactions Using Nanoimprint Lithography.
J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2009 Jan 1;27(1):61-65. doi: 10.1116/1.3043472.
7
Nanoscale growth factor patterns by immobilization on a heparin-mimicking polymer.
J Am Chem Soc. 2008 Dec 10;130(49):16585-91. doi: 10.1021/ja803676r.
9
Engineering substrate topography at the micro- and nanoscale to control cell function.
Angew Chem Int Ed Engl. 2009;48(30):5406-15. doi: 10.1002/anie.200805179.
10
Nanoparticulate systems for growth factor delivery.
Pharm Res. 2009 Jul;26(7):1561-80. doi: 10.1007/s11095-009-9897-z. Epub 2009 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验