Suppr超能文献

用于二选一强制选择任务的稳健策略与最优策略

Robust versus optimal strategies for two-alternative forced choice tasks.

作者信息

Zacksenhouse M, Bogacz R, Holmes P

机构信息

Faculty of Mechanical Engineering, Technion -Israel Institute of Technology, Haifa 32000, Israel.

出版信息

J Math Psychol. 2010 Apr 1;54(2):230-246. doi: 10.1016/j.jmp.2009.12.004. Epub 2010 Jan 13.

Abstract

It has been proposed that animals and humans might choose a speed-accuracy tradeoff that maximizes reward rate. For this utility function the simple drift-diffusion model of two-alternative forced-choice tasks predicts a parameter-free optimal performance curve that relates normalized decision times to error rates under varying task conditions. However, behavioral data indicate that only ≈ 30% of subjects achieve optimality, and here we investigate the possibility that, in allowing for uncertainties, subjects might exercise robust strategies instead of optimal ones. We consider two strategies in which robustness is achieved by relinquishing performance: maximin and robust-satisficing. The former supposes maximization of guaranteed performance under a presumed level of uncertainty; the latter assumes that subjects require a critical performance level and maximize the level of uncertainty under which it can be guaranteed. These strategies respectively yield performance curves parameterized by presumed uncertainty level and required performance. Maximin performance curves for uncertainties in response-to-stimulus interval match data for the lower-scoring 70% of subjects well, and are more likely to explain it than robust-satisficing or alternative optimal performance curves that emphasize accuracy. For uncertainties in signal-to-noise ratio, neither maximin nor robust-satisficing performance curves adequately describe the data. We discuss implications for decisions under uncertainties, and suggest further behavioral assays.

摘要

有人提出,动物和人类可能会选择一种速度与准确性的权衡,以实现奖励率最大化。对于这种效用函数,二选一强制选择任务的简单漂移扩散模型预测了一条无参数的最优性能曲线,该曲线在不同任务条件下将归一化决策时间与错误率联系起来。然而,行为数据表明,只有约30%的受试者能达到最优,在此我们研究了一种可能性,即在考虑不确定性的情况下,受试者可能会采用稳健策略而非最优策略。我们考虑了两种通过放弃性能来实现稳健性的策略:极大极小策略和稳健满意策略。前者假定在假定的不确定性水平下最大化保证性能;后者假设受试者需要一个关键性能水平,并在可保证该水平的情况下最大化不确定性水平。这些策略分别产生了由假定的不确定性水平和所需性能参数化的性能曲线。刺激反应间隔不确定性的极大极小性能曲线与得分较低的70%受试者的数据匹配良好,并且比强调准确性的稳健满意策略或替代最优性能曲线更有可能解释这些数据。对于信噪比的不确定性,极大极小策略和稳健满意策略的性能曲线都不能充分描述数据。我们讨论了不确定性下决策的影响,并提出了进一步的行为分析方法。

相似文献

1
Robust versus optimal strategies for two-alternative forced choice tasks.
J Math Psychol. 2010 Apr 1;54(2):230-246. doi: 10.1016/j.jmp.2009.12.004. Epub 2010 Jan 13.
2
Robust Satisficing Linear Regression: performance/robustness trade-off and consistency criterion.
Mech Syst Signal Process. 2009 Aug;23(6):1954-1964. doi: 10.1016/j.ymssp.2008.09.008.
3
Robust Satisficing Decision Making for Unmanned Aerial Vehicle Complex Missions under Severe Uncertainty.
PLoS One. 2016 Nov 11;11(11):e0166448. doi: 10.1371/journal.pone.0166448. eCollection 2016.
5
Reward rate optimization in two-alternative decision making: empirical tests of theoretical predictions.
J Exp Psychol Hum Percept Perform. 2009 Dec;35(6):1865-97. doi: 10.1037/a0016926.
6
Optimal temporal risk assessment.
Front Integr Neurosci. 2011 Sep 27;5:56. doi: 10.3389/fnint.2011.00056. eCollection 2011.
8
Mice and rats fail to integrate exogenous timing noise into their time-based decisions.
Anim Cogn. 2016 Nov;19(6):1215-1225. doi: 10.1007/s10071-016-1033-y. Epub 2016 Sep 19.
10
Reward optimization in the primate brain: a probabilistic model of decision making under uncertainty.
PLoS One. 2013;8(1):e53344. doi: 10.1371/journal.pone.0053344. Epub 2013 Jan 22.

引用本文的文献

1
Normative evidence weighing and accumulation in correlated environments.
Elife. 2025 Jul 14;13:RP100258. doi: 10.7554/eLife.100258.
2
A vast space of compact strategies for effective decisions.
Sci Adv. 2024 Jun 21;10(25):eadj4064. doi: 10.1126/sciadv.adj4064.
3
Normative evidence weighing and accumulation in correlated environments.
bioRxiv. 2025 Feb 8:2024.05.29.596489. doi: 10.1101/2024.05.29.596489.
4
How cortico-basal ganglia-thalamic subnetworks can shift decision policies to maximize reward rate.
bioRxiv. 2025 Jan 5:2024.05.21.595174. doi: 10.1101/2024.05.21.595174.
5
Strategically managing learning during perceptual decision making.
Elife. 2023 Feb 14;12:e64978. doi: 10.7554/eLife.64978.
6
Effects of model inaccuracies on reaching movements with intermittent control.
PLoS One. 2019 Oct 30;14(10):e0224265. doi: 10.1371/journal.pone.0224265. eCollection 2019.
7
A statistical test for the optimality of deliberative time allocation.
Psychon Bull Rev. 2019 Jun;26(3):855-867. doi: 10.3758/s13423-018-1555-1.
8
Ongoing, rational calibration of reward-driven perceptual biases.
Elife. 2018 Oct 10;7:e36018. doi: 10.7554/eLife.36018.
9
Suboptimality in perceptual decision making.
Behav Brain Sci. 2018 Feb 27;41:e223. doi: 10.1017/S0140525X18000936.
10
Time-varying decision boundaries: insights from optimality analysis.
Psychon Bull Rev. 2018 Jun;25(3):971-996. doi: 10.3758/s13423-017-1340-6.

本文引用的文献

1
Robust Satisficing Linear Regression: performance/robustness trade-off and consistency criterion.
Mech Syst Signal Process. 2009 Aug;23(6):1954-1964. doi: 10.1016/j.ymssp.2008.09.008.
2
Do humans produce the speed-accuracy trade-off that maximizes reward rate?
Q J Exp Psychol (Hove). 2010 May;63(5):863-91. doi: 10.1080/17470210903091643. Epub 2009 Sep 10.
3
On diffusion processes with variable drift rates as models for decision making during learning.
New J Phys. 2008 Jan 31;10(15006):nihpa49499. doi: 10.1088/1367-2630/10/1/015006.
4
Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation.
PLoS Comput Biol. 2008 Mar 28;4(3):e1000046. doi: 10.1371/journal.pcbi.1000046.
5
A neural network model of the Eriksen task: reduction, analysis, and data fitting.
Neural Comput. 2008 Feb;20(2):345-73. doi: 10.1162/neco.2007.08-06-313.
6
Evidence for time-variant decision making.
Eur J Neurosci. 2006 Dec;24(12):3628-41. doi: 10.1111/j.1460-9568.2006.05221.x.
7
Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task.
J Neurophysiol. 2007 Feb;97(2):1756-74. doi: 10.1152/jn.00393.2006. Epub 2006 Nov 22.
9
Rapid decision threshold modulation by reward rate in a neural network.
Neural Netw. 2006 Oct;19(8):1013-26. doi: 10.1016/j.neunet.2006.05.038. Epub 2006 Sep 20.
10
Stochastic models of decisions about motion direction: behavior and physiology.
Neural Netw. 2006 Oct;19(8):981-1012. doi: 10.1016/j.neunet.2006.05.042. Epub 2006 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验