Suppr超能文献

理性药物设计中的结合位点匹配:算法与应用。

Binding site matching in rational drug design: algorithms and applications.

机构信息

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.

出版信息

Brief Bioinform. 2019 Nov 27;20(6):2167-2184. doi: 10.1093/bib/bby078.

Abstract

Interactions between proteins and small molecules are critical for biological functions. These interactions often occur in small cavities within protein structures, known as ligand-binding pockets. Understanding the physicochemical qualities of binding pockets is essential to improve not only our basic knowledge of biological systems, but also drug development procedures. In order to quantify similarities among pockets in terms of their geometries and chemical properties, either bound ligands can be compared to one another or binding sites can be matched directly. Both perspectives routinely take advantage of computational methods including various techniques to represent and compare small molecules as well as local protein structures. In this review, we survey 12 tools widely used to match pockets. These methods are divided into five categories based on the algorithm implemented to construct binding-site alignments. In addition to the comprehensive analysis of their algorithms, test sets and the performance of each method are described. We also discuss general pharmacological applications of computational pocket matching in drug repurposing, polypharmacology and side effects. Reflecting on the importance of these techniques in drug discovery, in the end, we elaborate on the development of more accurate meta-predictors, the incorporation of protein flexibility and the integration of powerful artificial intelligence technologies such as deep learning.

摘要

蛋白质与小分子之间的相互作用对于生物功能至关重要。这些相互作用通常发生在蛋白质结构中的小分子结合口袋内的小腔中。了解结合口袋的物理化学性质对于提高我们对生物系统的基础知识以及药物开发过程至关重要。为了根据口袋的几何形状和化学性质来量化口袋之间的相似性,可以将结合的配体相互比较,也可以直接将结合位点进行匹配。这两种观点都经常利用包括各种技术来表示和比较小分子以及局部蛋白质结构的计算方法。在这篇综述中,我们调查了 12 种广泛用于匹配口袋的工具。这些方法根据构建结合位点比对所采用的算法分为五类。除了对其算法进行全面分析外,还描述了每个方法的测试集和性能。我们还讨论了计算口袋匹配在药物重定位、多药理学和副作用方面的一般药理学应用。考虑到这些技术在药物发现中的重要性,最后我们详细阐述了更准确的元预测器的开发、蛋白质柔性的纳入以及强大的人工智能技术(如深度学习)的整合。

相似文献

2
Estimating the Similarity between Protein Pockets.估算蛋白质口袋之间的相似性。
Int J Mol Sci. 2022 Oct 18;23(20):12462. doi: 10.3390/ijms232012462.
8
Computational polypharmacology: a new paradigm for drug discovery.计算多药理学:药物发现的新范式。
Expert Opin Drug Discov. 2017 Mar;12(3):279-291. doi: 10.1080/17460441.2017.1280024. Epub 2017 Jan 23.

引用本文的文献

7
Beyond sequence: Structure-based machine learning.超越序列:基于结构的机器学习。
Comput Struct Biotechnol J. 2022 Dec 29;21:630-643. doi: 10.1016/j.csbj.2022.12.039. eCollection 2023.

本文引用的文献

9
Detecting similar binding pockets to enable systems polypharmacology.检测相似的结合口袋以实现系统多药理学。
PLoS Comput Biol. 2017 Jun 29;13(6):e1005522. doi: 10.1371/journal.pcbi.1005522. eCollection 2017 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验