Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823, USA.
J Neural Eng. 2012 Dec;9(6):065004. doi: 10.1088/1741-2560/9/6/065004. Epub 2012 Nov 27.
Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.
脑机接口 (BMI) 的目标是为严重神经功能缺损的患者恢复丧失的感觉运动和认知功能。特别是,通过微刺激人为地引发神经活动模式,可以恢复丧失的感觉功能,从而诱导大脑对肢体状态的触觉和本体感觉反馈的感知。尽管有早期的概念验证表明,受试者可以学习区分有限的皮质内微刺激 (ICMS) 模式词汇,这些模式可以指示肢体的状态,但运动肢体的动态不太可能被任意选择的离散静态微刺激模式所感知,这就引发了对这种方法的泛化和可扩展性的质疑。在这项工作中,我们提出了一种旨在最优地激活上行感觉通路的微刺激方案。通过时空预编码器来实现优化,该预编码器最大化了指示肢体状态的感觉反馈和由丘脑微刺激引起的皮质神经反应之间的互信息。使用丘脑皮质通路的简化多输入多输出模型,我们表明,与不考虑传入通路结构和/或皮质状态的次优预编码器相比,这种最优预编码器可以在存在噪声的情况下更有效地传递信息。这些结果有望改善微刺激在人工设备或瘫痪肢体的感觉运动控制期间诱导感觉感知的方式。