Department of Psychology and Neuroscience, Duke University Durham, NC, USA ; Center for Cognitive Neuroscience, Duke University Durham, NC, USA.
Front Neurosci. 2012 Nov 23;6:162. doi: 10.3389/fnins.2012.00162. eCollection 2012.
Research in neuroscience faces the challenge of integrating information across different spatial scales of brain function. A promising technique for harnessing information at a range of spatial scales is multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data. While the prevalence of MVPA has increased dramatically in recent years, its typical implementations for classification of mental states utilize only a subset of the information encoded in local fMRI signals. We review published studies employing multivariate pattern classification since the technique's introduction, which reveal an extensive focus on the improved detection power that linear classifiers provide over traditional analysis techniques. We demonstrate using simulations and a searchlight approach, however, that non-linear classifiers are capable of extracting distinct information about interactions within a local region. We conclude that for spatially localized analyses, such as searchlight and region of interest, multiple classification approaches should be compared in order to match fMRI analyses to the properties of local circuits.
神经科学研究面临着整合大脑功能不同空间尺度信息的挑战。多变量模式分析(MVPA)是一种在多种空间尺度上利用信息的有前途的技术,它可以对功能磁共振成像(fMRI)数据进行分析。虽然近年来 MVPA 的应用已经显著增加,但它在心理状态分类中的典型实现只利用了局部 fMRI 信号中编码信息的一个子集。我们回顾了自该技术引入以来发表的研究,这些研究揭示了人们广泛关注线性分类器相对于传统分析技术提供的改进检测能力。然而,我们通过模拟和搜索灯方法证明,非线性分类器能够提取关于局部区域内相互作用的独特信息。我们得出结论,对于空间上局部的分析,如搜索灯和感兴趣区域,应该比较多种分类方法,以便将 fMRI 分析与局部回路的特性相匹配。