Suppr超能文献

区分多体素模式和平均激活:为什么、如何以及它能告诉我们什么?

Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us?

机构信息

Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA, 19104, USA,

出版信息

Cogn Affect Behav Neurosci. 2013 Sep;13(3):667-73. doi: 10.3758/s13415-013-0186-2.

Abstract

The introduction of multi-voxel pattern analysis (MVPA) to the functional magnetic resonance imaging (fMRI) community has brought a deeper appreciation for the diverse forms of information that can be present within fMRI activity. The conclusions drawn from MVPA investigations are frequently influenced by both the ability to decode information from multi-voxel patterns and mean activation levels. In practice, MVPA studies vary widely in why and how they test for differing overall response levels. In this article, I examine the place of univariate information in MVPA investigations. I first discuss the variety of interpretations given to finding univariate response differences. I go on to discuss some of the analysis approaches used to investigate and compare univariate and multivariate sources of information, which can illuminate their respective contributions. It will be important for the MVPA and general fMRI community to continue to discuss and debate these important issues.

摘要

多体素模式分析 (MVPA) 的引入使功能磁共振成像 (fMRI) 领域对 fMRI 活动中存在的多种形式的信息有了更深入的认识。MVPA 研究的结论通常受到从多体素模式解码信息的能力和平均激活水平的影响。在实践中,MVPA 研究在为什么以及如何测试不同的整体反应水平方面差异很大。在本文中,我研究了单变量信息在 MVPA 研究中的位置。我首先讨论了对发现单变量反应差异的多种解释。接着,我讨论了一些用于研究和比较单变量和多变量信息源的分析方法,这些方法可以阐明它们各自的贡献。对于 MVPA 和一般的 fMRI 领域来说,继续讨论和辩论这些重要问题是很重要的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验