Suppr超能文献

通过局部旋转横截面分析检测视网膜微动脉瘤。

Retinal microaneurysm detection through local rotating cross-section profile analysis.

机构信息

Department of Informatics, University of Debrecen, 4010 Debrecen, Hungary.

出版信息

IEEE Trans Med Imaging. 2013 Feb;32(2):400-7. doi: 10.1109/TMI.2012.2228665. Epub 2012 Nov 21.

Abstract

A method for the automatic detection of microaneurysms (MAs) in color retinal images is proposed in this paper. The recognition of MAs is an essential step in the diagnosis and grading of diabetic retinopathy. The proposed method realizes MA detection through the analysis of directional cross-section profiles centered on the local maximum pixels of the preprocessed image. Peak detection is applied on each profile, and a set of attributes regarding the size, height, and shape of the peak are calculated subsequently. The statistical measures of these attribute values as the orientation of the cross-section changes constitute the feature set that is used in a naïve Bayes classification to exclude spurious candidates. We give a formula for the final score of the remaining candidates, which can be thresholded further for a binary output. The proposed method has been tested in the Retinopathy Online Challenge, where it proved to be competitive with the state-of-the-art approaches. We also present the experimental results for a private image set using the same classifier setup.

摘要

本文提出了一种在彩色视网膜图像中自动检测微动脉瘤(MAs)的方法。MAs 的识别是糖尿病视网膜病变诊断和分级的重要步骤。该方法通过分析以预处理图像的局部极大值像素为中心的方向横截面对实现 MA 检测。在每个轮廓上应用峰检测,并随后计算关于峰的大小、高度和形状的一组属性。这些属性值的统计度量随着横截面的方向变化构成了用于朴素贝叶斯分类的特征集,以排除虚假候选者。我们给出了剩余候选者的最终得分公式,可以对其进行进一步的阈值处理以获得二进制输出。该方法已在视网膜在线挑战赛中进行了测试,结果表明其与最先进的方法具有竞争力。我们还使用相同的分类器设置呈现了使用相同的分类器设置的私有图像集的实验结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验