Suppr超能文献

嵌套 U-Net 用于视网膜眼底图像中红色病灶的分割和子图像分类以去除假阳性。

Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives.

机构信息

Electrical Engineering Department, National Institute of Technology Durgapur, Durgapur, 713209, India.

Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

出版信息

J Digit Imaging. 2022 Oct;35(5):1111-1119. doi: 10.1007/s10278-022-00629-4. Epub 2022 Apr 26.

Abstract

Diabetic retinopathy is a pathological change of the retina that occurs for long-term diabetes. The patients become symptomatic in advanced stages of diabetic retinopathy resulting in severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy stages. There is a need of an automated screening tool for the early detection and treatment of patients with diabetic retinopathy. This paper focuses on the segmentation of red lesions using nested U-Net Zhou et al. (Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer, 2018) followed by removal of false positives based on the sub-image classification method. Different sizes of sub-images were studied for the reduction in false positives in the sub-image classification method. The network could capture semantic features and fine details due to dense convolutional blocks connected via skip connections in between down sampling and up sampling paths. False-negative candidates were very few and the sub-image classification network effectively reduced the falsely detected candidates. The proposed framework achieves a sensitivity of [Formula: see text], precision of [Formula: see text], and F1-Score of [Formula: see text] for the DIARETDB1 data set Kalviainen and Uusutalo (Medical Image Understanding and Analysis, Citeseer, 2007). It outperforms the state-of-the-art networks such as U-Net Ronneberger et al. (International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015) and attention U-Net Oktay et al. (Attention u-net: Learning where to look for the pancreas, 2018).

摘要

糖尿病性视网膜病变是一种长期糖尿病引起的视网膜病理变化。患者在糖尿病性视网膜病变的晚期出现症状,导致严重的非增生性糖尿病性视网膜病变或增生性糖尿病性视网膜病变阶段。因此需要一种自动化的筛查工具来早期发现和治疗糖尿病性视网膜病变患者。本文重点研究了使用嵌套 U-Net Zhou 等人的方法(深度学习在医学图像分析和多模态学习中的临床决策支持,Springer,2018)对红色病变进行分割,然后根据子图像分类方法去除假阳性。研究了不同大小的子图像,以减少子图像分类方法中的假阳性。由于密集卷积块通过下采样和上采样路径之间的跳过连接连接,因此该网络可以捕获语义特征和精细细节。假阴性候选者很少,子图像分类网络有效地减少了错误检测的候选者。所提出的框架在 DIARETDB1 数据集(Kalviainen 和 Uusutalo,医学图像理解和分析,Citeseer,2007)上实现了 [Formula: see text] 的灵敏度、[Formula: see text] 的精度和 [Formula: see text] 的 F1 分数。它优于最新的网络,如 U-Net Ronneberger 等人(医学图像计算和计算机辅助干预国际会议,Springer,2015)和注意 U-Net Oktay 等人(关注 U-Net:学习在哪里寻找胰腺,2018)。

相似文献

8
Deep image mining for diabetic retinopathy screening.深度图像挖掘在糖尿病视网膜病变筛查中的应用。
Med Image Anal. 2017 Jul;39:178-193. doi: 10.1016/j.media.2017.04.012. Epub 2017 Apr 28.

引用本文的文献

5
Kidney medicine meets computer vision: a bibliometric analysis.肾脏病医学与计算机视觉:文献计量分析。
Int Urol Nephrol. 2024 Oct;56(10):3361-3380. doi: 10.1007/s11255-024-04082-w. Epub 2024 May 30.

本文引用的文献

1
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
6
Automatic Detection of Retinal Lesions for Screening of Diabetic Retinopathy.自动检测视网膜病变以筛查糖尿病性视网膜病变。
IEEE Trans Biomed Eng. 2018 Mar;65(3):608-618. doi: 10.1109/TBME.2017.2707578. Epub 2017 May 24.
7
Localizing Microaneurysms in Fundus Images Through Singular Spectrum Analysis.通过奇异谱分析在眼底图像中定位微动脉瘤
IEEE Trans Biomed Eng. 2017 May;64(5):990-1002. doi: 10.1109/TBME.2016.2585344. Epub 2016 Jun 27.
8
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验