Suppr超能文献

电活动模型:同一细胞的校准和预测测试。

Models of electrical activity: calibration and prediction testing on the same cell.

机构信息

Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.

出版信息

Biophys J. 2012 Nov 7;103(9):2021-32. doi: 10.1016/j.bpj.2012.09.034.

Abstract

Mathematical models are increasingly important in biology, and testability is becoming a critical issue. One limitation is that one model simulation tests a parameter set representing one instance of the biological counterpart, whereas biological systems are heterogeneous in their properties and behavior, and a model often is fitted to represent an ideal average. This is also true for models of a cell's electrical activity; even within a narrowly defined population there can be considerable variation in electrophysiological phenotype. Here, we describe a computational experimental approach for parameterizing a model of the electrical activity of a cell in real time. We combine the inexpensive parallel computational power of a programmable graphics processing unit with the flexibility of the dynamic clamp method. The approach involves 1), recording a cell's electrical activity, 2), parameterizing a model to the recording, 3), generating predictions, and 4), testing the predictions on the same cell used for the calibration. We demonstrate the experimental feasibility of our approach using a cell line (GH4C1). These cells are electrically active, and they display tonic spiking or bursting. We use our approach to predict parameter changes that can convert one pattern to the other.

摘要

数学模型在生物学中越来越重要,可测试性正成为一个关键问题。一个限制是,一个模型模拟测试代表生物对应物的一个实例的参数集,而生物系统在其性质和行为上是异质的,并且模型通常被拟合以表示理想的平均值。这对于细胞电活动的模型也是如此;即使在一个定义狭窄的群体中,也可能存在电生理表型的相当大的变化。在这里,我们描述了一种实时参数化细胞电活动模型的计算实验方法。我们结合了可编程图形处理单元的廉价并行计算能力和动态钳位方法的灵活性。该方法包括 1)记录细胞的电活动,2)对记录进行模型参数化,3)生成预测,以及 4)在用于校准的同一细胞上测试预测。我们使用细胞系(GH4C1)证明了我们方法的实验可行性。这些细胞是电活性的,它们表现出紧张性爆发或爆发。我们使用我们的方法来预测可以将一种模式转换为另一种模式的参数变化。

相似文献

1
Models of electrical activity: calibration and prediction testing on the same cell.
Biophys J. 2012 Nov 7;103(9):2021-32. doi: 10.1016/j.bpj.2012.09.034.
2
Is bursting more effective than spiking in evoking pituitary hormone secretion? A spatiotemporal simulation study of calcium and granule dynamics.
Am J Physiol Endocrinol Metab. 2016 Apr 1;310(7):E515-25. doi: 10.1152/ajpendo.00500.2015. Epub 2016 Jan 19.
4
Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances.
Biophys J. 1999 Mar;76(3):1423-35. doi: 10.1016/S0006-3495(99)77303-0.
5
Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory.
J Neurophysiol. 2007 Jul;98(1):131-44. doi: 10.1152/jn.00872.2006. Epub 2007 May 9.
8
Single electrode dynamic clamp with StdpC.
J Neurosci Methods. 2012 Oct 15;211(1):11-21. doi: 10.1016/j.jneumeth.2012.08.003. Epub 2012 Aug 14.
9
The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models.
Biophys J. 2003 May;84(5):2852-70. doi: 10.1016/S0006-3495(03)70014-9.
10
The phantom burster model for pancreatic beta-cells.
Biophys J. 2000 Dec;79(6):2880-92. doi: 10.1016/S0006-3495(00)76525-8.

引用本文的文献

1
A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research.
Front Physiol. 2018 Jul 20;9:958. doi: 10.3389/fphys.2018.00958. eCollection 2018.
2
Using dynamic clamp to quantify pathological changes in the excitability of primary somatosensory neurons.
J Physiol. 2018 Jun;596(11):2209-2227. doi: 10.1113/JP275580. Epub 2018 May 10.
3
Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
J Physiol. 2018 May 15;596(10):1813-1828. doi: 10.1113/JP275733. Epub 2018 Apr 17.
4
I love it when a plan comes together: Insight gained through convergence of competing mathematical models.
J Mol Cell Cardiol. 2017 Jan;102:31-33. doi: 10.1016/j.yjmcc.2016.10.015. Epub 2016 Nov 30.
5
A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability.
Cell. 2015 Aug 13;162(4):836-48. doi: 10.1016/j.cell.2015.07.036.
6
Cell-specific cardiac electrophysiology models.
PLoS Comput Biol. 2015 Apr 30;11(4):e1004242. doi: 10.1371/journal.pcbi.1004242. eCollection 2015 Apr.

本文引用的文献

1
Optimizing ion channel models using a parallel genetic algorithm on graphical processors.
J Neurosci Methods. 2012;206(2):183-94. doi: 10.1016/j.jneumeth.2012.02.024. Epub 2012 Mar 8.
3
Dynamical systems theory in physiology.
J Gen Physiol. 2011 Jul;138(1):13-9. doi: 10.1085/jgp.201110668.
4
Multiple models to capture the variability in biological neurons and networks.
Nat Neurosci. 2011 Feb;14(2):133-8. doi: 10.1038/nn.2735.
5
Modelling the in vivo spike activity of phasically-firing vasopressin cells.
J Neuroendocrinol. 2010 Dec;22(12):1290-300. doi: 10.1111/j.1365-2826.2010.02080.x.
7
A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data.
Front Neurosci. 2007 Oct 15;1(1):7-18. doi: 10.3389/neuro.01.1.1.001.2007. eCollection 2007 Nov.
8
Control of K(Ca) channels by calcium nano/microdomains.
Neuron. 2008 Sep 25;59(6):873-81. doi: 10.1016/j.neuron.2008.09.001.
9
Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp.
Biophys J. 2008 Jul;95(1):66-87. doi: 10.1529/biophysj.107.118190. Epub 2008 Mar 28.
10
Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions.
J Neurophysiol. 2008 Apr;99(4):1871-83. doi: 10.1152/jn.00032.2008. Epub 2008 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验