Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.
Biophys J. 2012 Nov 7;103(9):2021-32. doi: 10.1016/j.bpj.2012.09.034.
Mathematical models are increasingly important in biology, and testability is becoming a critical issue. One limitation is that one model simulation tests a parameter set representing one instance of the biological counterpart, whereas biological systems are heterogeneous in their properties and behavior, and a model often is fitted to represent an ideal average. This is also true for models of a cell's electrical activity; even within a narrowly defined population there can be considerable variation in electrophysiological phenotype. Here, we describe a computational experimental approach for parameterizing a model of the electrical activity of a cell in real time. We combine the inexpensive parallel computational power of a programmable graphics processing unit with the flexibility of the dynamic clamp method. The approach involves 1), recording a cell's electrical activity, 2), parameterizing a model to the recording, 3), generating predictions, and 4), testing the predictions on the same cell used for the calibration. We demonstrate the experimental feasibility of our approach using a cell line (GH4C1). These cells are electrically active, and they display tonic spiking or bursting. We use our approach to predict parameter changes that can convert one pattern to the other.
数学模型在生物学中越来越重要,可测试性正成为一个关键问题。一个限制是,一个模型模拟测试代表生物对应物的一个实例的参数集,而生物系统在其性质和行为上是异质的,并且模型通常被拟合以表示理想的平均值。这对于细胞电活动的模型也是如此;即使在一个定义狭窄的群体中,也可能存在电生理表型的相当大的变化。在这里,我们描述了一种实时参数化细胞电活动模型的计算实验方法。我们结合了可编程图形处理单元的廉价并行计算能力和动态钳位方法的灵活性。该方法包括 1)记录细胞的电活动,2)对记录进行模型参数化,3)生成预测,以及 4)在用于校准的同一细胞上测试预测。我们使用细胞系(GH4C1)证明了我们方法的实验可行性。这些细胞是电活性的,它们表现出紧张性爆发或爆发。我们使用我们的方法来预测可以将一种模式转换为另一种模式的参数变化。