Suppr超能文献

蛋白质配体诱导的蛋白质选择性纳米孔中 1/噪声放大。

Protein Ligand-Induced Amplification in the 1/ Noise of a Protein-Selective Nanopore.

机构信息

Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States.

Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States.

出版信息

Langmuir. 2020 Dec 22;36(50):15247-15257. doi: 10.1021/acs.langmuir.0c02498. Epub 2020 Dec 13.

Abstract

Previous studies of transmembrane protein channels have employed noise analysis to examine their statistical current fluctuations. In general, these explorations determined a substrate-induced amplification in the Gaussian white noise of these systems at a low-frequency regime. This outcome implies a lack of slowly appearing fluctuations in the number and local mobility of diffusing charges in the presence of channel substrates. Such parameters are among the key factors in generating a low-frequency 1/ noise. Here, we show that a protein-selective biological nanopore exhibits a substrate-induced amplification in the 1/ noise. The modular composition of this biological nanopore includes a hydrophilic transmembrane protein pore fused to a water-soluble binding protein on its extramembranous side. In addition, this protein nanopore shows an open substate populated by a high-frequency current noise because of the flickering of an engineered polypeptide adaptor at the tip of the pore. However, the physical association of the protein ligand with the binding domain reversibly switches the protein nanopore from a high-frequency noise substate into a quiet substate. In the absence of the protein ligand, our nanopore shows a low-frequency white noise. Remarkably, in the presence of the protein ligand, an amplified low-frequency 1/ noise was detected in a ligand concentration-dependent fashion. This finding suggests slowly occurring equilibrium fluctuations in the density and local mobility of charge carriers under these conditions. Furthermore, we report that the excess in 1/ noise is generated by reversible switches between the noisy ligand-released substate and the quiet ligand-captured substate. Finally, quantitative aspects of the low-frequency 1/ noise are in accord with theoretical predictions of the current noise analysis of protein channel-ligand interactions.

摘要

先前关于跨膜蛋白通道的研究运用噪声分析来研究它们的统计电流波动。一般来说,这些探索在低频范围内确定了基质诱导的这些系统中高斯白噪声的放大。这一结果意味着在通道基质存在的情况下,扩散电荷的数量和局部迁移率没有缓慢出现的波动。这些参数是产生低频 1/f 噪声的关键因素之一。在这里,我们表明,一种蛋白质选择性的生物纳米孔表现出基质诱导的 1/f 噪声放大。这种生物纳米孔的模块化组成包括亲水跨膜蛋白孔,其外膜侧融合有水溶性结合蛋白。此外,由于孔尖端的工程多肽接头的闪烁,这种蛋白质纳米孔显示出一个由高频电流噪声组成的开放亚态。然而,由于蛋白质配体与结合域的物理结合,蛋白质纳米孔可逆地从高频噪声亚态切换到安静亚态。在没有蛋白质配体的情况下,我们的纳米孔显示出低频白噪声。值得注意的是,在存在蛋白质配体的情况下,以配体浓度依赖的方式检测到放大的低频 1/f 噪声。这一发现表明,在这些条件下,载流子的密度和局部迁移率缓慢地出现平衡波动。此外,我们报告说,1/f 噪声的过剩是由嘈杂的配体释放亚态和安静的配体捕获亚态之间的可逆转换产生的。最后,低频 1/f 噪声的定量方面与蛋白质通道-配体相互作用的电流噪声分析的理论预测一致。

相似文献

1
Protein Ligand-Induced Amplification in the 1/ Noise of a Protein-Selective Nanopore.
Langmuir. 2020 Dec 22;36(50):15247-15257. doi: 10.1021/acs.langmuir.0c02498. Epub 2020 Dec 13.
2
Current noise of a protein-selective biological nanopore.
Proteomics. 2022 Mar;22(5-6):e2100077. doi: 10.1002/pmic.202100077. Epub 2021 Jul 31.
3
Adsorption Kinetics in Open Nanopores as a Source of Low-Frequency Noise.
Nano Lett. 2019 Oct 9;19(10):7265-7272. doi: 10.1021/acs.nanolett.9b02858. Epub 2019 Sep 11.
4
1/f noise in solid-state nanopores is governed by access and surface regions.
Nanotechnology. 2019 Sep 27;30(39):395202. doi: 10.1088/1361-6528/ab2d35. Epub 2019 Jun 27.
5
Noise in solid-state nanopores.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):417-21. doi: 10.1073/pnas.0705349105. Epub 2008 Jan 9.
6
Signal and Noise in FET-Nanopore Devices.
ACS Sens. 2018 Feb 23;3(2):313-319. doi: 10.1021/acssensors.7b00708. Epub 2018 Jan 24.
7
Insertion state of modular protein nanopores into a membrane.
Biochim Biophys Acta Biomembr. 2021 May 1;1863(5):183570. doi: 10.1016/j.bbamem.2021.183570. Epub 2021 Jan 30.
8
1/f noise in graphene nanopores.
Nanotechnology. 2015 Feb 20;26(7):074001. doi: 10.1088/0957-4484/26/7/074001. Epub 2015 Jan 28.
9
Current Blockades of Proteins inside Nanopores for Real-Time Metabolome Analysis.
ACS Nano. 2020 Feb 25;14(2):2296-2307. doi: 10.1021/acsnano.9b09434. Epub 2020 Feb 7.
10
Low Noise Hybrid Nanopore with Engineered OmpG and Bilayer MoS.
ACS Appl Bio Mater. 2021 Jul 19;4(7):5416-5424. doi: 10.1021/acsabm.1c00095. Epub 2021 Jun 23.

引用本文的文献

1
Does the disclosure of medical insurance information affect patients' willingness to adopt the diagnosis related groups system.
Front Public Health. 2023 Aug 21;11:1136178. doi: 10.3389/fpubh.2023.1136178. eCollection 2023.
2
Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets.
Int J Mol Sci. 2023 Jul 28;24(15):12095. doi: 10.3390/ijms241512095.
3
Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore.
Nat Commun. 2023 Apr 4;14(1):1461. doi: 10.1038/s41467-023-37098-4.
4
A generalizable nanopore sensor for highly specific protein detection at single-molecule precision.
Nat Commun. 2023 Mar 20;14(1):1374. doi: 10.1038/s41467-023-36944-9.
5
Disentangling the recognition complexity of a protein hub using a nanopore.
Nat Commun. 2022 Feb 21;13(1):978. doi: 10.1038/s41467-022-28465-8.
6
Current noise of a protein-selective biological nanopore.
Proteomics. 2022 Mar;22(5-6):e2100077. doi: 10.1002/pmic.202100077. Epub 2021 Jul 31.
7
Insertion state of modular protein nanopores into a membrane.
Biochim Biophys Acta Biomembr. 2021 May 1;1863(5):183570. doi: 10.1016/j.bbamem.2021.183570. Epub 2021 Jan 30.

本文引用的文献

1
Comparing Current Noise in Biological and Solid-State Nanopores.
ACS Nano. 2020 Feb 25;14(2):1338-1349. doi: 10.1021/acsnano.9b09353. Epub 2020 Feb 17.
2
Taking Toll on Membranes: Curious Cases of Bacterial β-Barrel Pore-Forming Toxins.
Biochemistry. 2020 Jan 21;59(2):163-170. doi: 10.1021/acs.biochem.9b00783. Epub 2019 Oct 25.
3
Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel.
Biophys J. 2019 Nov 5;117(9):1751-1763. doi: 10.1016/j.bpj.2019.08.041. Epub 2019 Sep 12.
4
Single-Molecule Protein Detection in a Biofluid Using a Quantitative Nanopore Sensor.
ACS Sens. 2019 Sep 27;4(9):2320-2326. doi: 10.1021/acssensors.9b00848. Epub 2019 Aug 21.
5
1/f noise in solid-state nanopores is governed by access and surface regions.
Nanotechnology. 2019 Sep 27;30(39):395202. doi: 10.1088/1361-6528/ab2d35. Epub 2019 Jun 27.
6
Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions.
ACS Nano. 2019 Apr 23;13(4):4469-4477. doi: 10.1021/acsnano.9b00008. Epub 2019 Apr 3.
7
Single-Molecule Protein Phosphorylation and Dephosphorylation by Nanopore Enzymology.
ACS Nano. 2019 Jan 22;13(1):633-641. doi: 10.1021/acsnano.8b07697. Epub 2019 Jan 4.
9
Kinetics of Membrane Protein-Detergent Interactions Depend on Protein Electrostatics.
J Phys Chem B. 2018 Oct 18;122(41):9471-9481. doi: 10.1021/acs.jpcb.8b07889. Epub 2018 Oct 5.
10
Advances in cryoEM and its impact on β-pore forming proteins.
Curr Opin Struct Biol. 2018 Oct;52:41-49. doi: 10.1016/j.sbi.2018.07.010. Epub 2018 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验