Institute of Biomedical Engineering, School and Medicine and School of Engineering, National Taiwan University, Taipei, Taiwan.
Acta Biomater. 2013 Mar;9(3):5502-10. doi: 10.1016/j.actbio.2012.11.024. Epub 2012 Nov 28.
Cells reside in a complex microenvironment in situ, with a number of chemical and physical parameters interacting to modulate cell phenotype and activities. To understand cell behavior in three dimensions recent studies have utilized natural or synthetic hydrogel or fibrous materials. Taking cues from the nucleation and growth characteristics of collagen fibrils in shear flow, we generate cell-laden three-dimensional collagen hydrogels with aligned collagen fibrils using a simple microfluidic device driven by hydrostatic flow. Furthermore, by regulating the collagen hydrogel thickness, the effective surface stiffness can be modulated to change the mechanical environment of the cell. Dimensionality, topography, and substrate thickness/stiffness change cell morphology and migration. Interactions amongst these parameters further influence cell behavior. For instance, while cells responded similarly to the change in substrate thickness/stiffness on two-dimensional random gels, dimensionality and fiber alignment both interacted with substrate thickness/stiffness to change cell morphology and motility. This economical, simple to use, and fully biocompatible platform highlights the importance of well-controlled physical parameters in the cellular microenvironment.
细胞存在于原位的复杂微环境中,许多化学和物理参数相互作用,调节细胞表型和活性。为了了解三维空间中的细胞行为,最近的研究利用了天然或合成的水凝胶或纤维材料。我们从剪切流中胶原蛋白原纤维成核和生长的特点中得到启示,使用简单的微流控装置在静水压驱动下生成具有定向胶原纤维的细胞填充三维胶原水凝胶。此外,通过调节胶原水凝胶的厚度,可以调节有效表面硬度来改变细胞的力学环境。维度、形貌和基底厚度/硬度改变细胞形态和迁移。这些参数之间的相互作用进一步影响细胞行为。例如,虽然细胞对二维随机凝胶上基底厚度/硬度的变化反应相似,但维度和纤维取向都与基底厚度/硬度相互作用,改变细胞形态和迁移能力。这种经济、易于使用且完全生物相容的平台突出了细胞微环境中精确控制物理参数的重要性。