School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
Nat Rev Cancer. 2024 Jul;24(7):461-479. doi: 10.1038/s41568-024-00704-8. Epub 2024 Jun 17.
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
提高临床反应预测能力的需求推动了具有增强生理相关性的癌症模型的发展。一个新的“精准生物材料”概念正在出现,它包含了患者模拟生物材料模型,通过忠实再现关键的微环境特征,试图准确地检测、治疗和模拟癌症。尽管最近的进展允许在体外复制组织模拟的硬度和分子组成,但复制肿瘤细胞外基质(ECM)中发现的 3D 纤维结构的方法仍相对未得到探索。尽管患者特异性纤维结构的确切影响尚不清楚,但我们总结了肿瘤纤维结构的已知作用,强调了它们在细胞-基质相互作用中的意义,最终对临床结果的影响。然后,我们探讨了在体外再现组织特异性 3D 纤维结构的挑战,强调了相关生物材料制造技术及其优缺点。最后,我们讨论了成像和图像分析技术(重点是针对胶原蛋白 I 优化的方法),这些技术可能是将肿瘤特异性 ECM 映射到高保真生物材料模型中的关键。我们预计,材料科学、癌症研究和图像分析的跨学科方法将阐明 3D 纤维结构在肿瘤发展中的作用,为机制研究和药物发现带来下一代患者模拟模型。