文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于巨磁电阻效应的电流传感器:设计及在智能电网中的潜在应用。

A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

机构信息

State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

Sensors (Basel). 2012 Nov 9;12(11):15520-41. doi: 10.3390/s121115520.


DOI:10.3390/s121115520
PMID:23202221
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3522974/
Abstract

Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

摘要

先进的传感和测量技术是实现智能电网的关键技术。巨磁电阻(GMR)效应已经彻底改变了数据存储和磁测量领域。在这项工作中,提出并讨论了一种基于商用模拟 GMR 芯片的用于智能电网的 GMR 电流传感器的设计。对传感器的静态、动态和热性能进行了表征。表征结果表明,在 0 到 ±5 A 的工作范围内,传感器的灵敏度为 28 mV·A(-1),线性度为 99.97%,最大偏差为 2.717%,电流测量时 10 kHz 的频率响应为-1.5 dB,具有热补偿的幅度响应最大变化为 0.0335%·°C(-1)。在智能电网系统的分布式实时测量和监测中,GMR 电流传感器具有出色的性能和成本效益,适用于稳态和瞬态监测等应用。GMR 电流传感器具有灵敏度高、线性度好、体积小、成本低、结构简单等优点,有望用于智能电网的测量和监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/1a5dbb0bb38e/sensors-12-15520f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/6f6269195fa7/sensors-12-15520f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/6efc94ffb5cb/sensors-12-15520f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/25b3b49ad1bf/sensors-12-15520f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/52447698a9fb/sensors-12-15520f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/261caa81ce94/sensors-12-15520f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/d7a0b5dd3662/sensors-12-15520f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/5131bb9a7cbb/sensors-12-15520f7a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/89c2f590d23d/sensors-12-15520f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/386391351472/sensors-12-15520f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/cd3ddd5205d7/sensors-12-15520f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/a92f54bed7c4/sensors-12-15520f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/60870be1191c/sensors-12-15520f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/23d552098410/sensors-12-15520f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/afc753817670/sensors-12-15520f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/5491cc304157/sensors-12-15520f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/1a5dbb0bb38e/sensors-12-15520f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/6f6269195fa7/sensors-12-15520f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/6efc94ffb5cb/sensors-12-15520f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/25b3b49ad1bf/sensors-12-15520f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/52447698a9fb/sensors-12-15520f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/261caa81ce94/sensors-12-15520f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/d7a0b5dd3662/sensors-12-15520f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/5131bb9a7cbb/sensors-12-15520f7a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/89c2f590d23d/sensors-12-15520f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/386391351472/sensors-12-15520f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/cd3ddd5205d7/sensors-12-15520f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/a92f54bed7c4/sensors-12-15520f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/60870be1191c/sensors-12-15520f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/23d552098410/sensors-12-15520f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/afc753817670/sensors-12-15520f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/5491cc304157/sensors-12-15520f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac6/3522974/1a5dbb0bb38e/sensors-12-15520f16.jpg

相似文献

[1]
A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

Sensors (Basel). 2012-11-9

[2]
High Sensitivity Differential Giant Magnetoresistance (GMR) Based Sensor for Non-Contacting DC/AC Current Measurement.

Sensors (Basel). 2020-1-6

[3]
Low Field Optimization of a Non-Contacting High-Sensitivity GMR-Based DC/AC Current Sensor.

Sensors (Basel). 2021-4-6

[4]
Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing.

Sensors (Basel). 2009-10-12

[5]
Electric Field-Tunable Giant Magnetoresistance (GMR) Sensor with Enhanced Linear Range.

ACS Appl Mater Interfaces. 2020-2-19

[6]
Dynamic Barrier Coverage in a Wireless Sensor Network for Smart Grids.

Sensors (Basel). 2018-12-22

[7]
Quasi-Static Current Measurement with Field-Modulated Spin-Valve GMR Sensors.

Sensors (Basel). 2019-4-20

[8]
A novel CMOS transducer for giant magnetoresistance sensors.

Rev Sci Instrum. 2017-2

[9]
The Effect of Geometrical Overlap between Giant Magnetoresistance Sensor and Magnetic Flux Concentrators: A Novel Comb-Shaped Sensor for Improved Sensitivity.

Sensors (Basel). 2022-12-1

[10]
Giant Magnetoresistance Biosensors in Biomedical Applications.

ACS Appl Mater Interfaces. 2022-3-2

引用本文的文献

[1]
Characterization of Magnetoresistive Shunts and Its Sensitivity Temperature Compensation.

Sensors (Basel). 2024-5-11

[2]
Clusters of Spin Valve Sensors in 3D Magnetic Field of a Label.

Sensors (Basel). 2021-5-21

[3]
Low Field Optimization of a Non-Contacting High-Sensitivity GMR-Based DC/AC Current Sensor.

Sensors (Basel). 2021-4-6

[4]
Power-over-Fiber LPIT for Voltage and Current Measurements in the Medium Voltage Distribution Networks.

Sensors (Basel). 2021-1-14

[5]
Self-Biased Bidomain LiNbO/Ni/Metglas Magnetoelectric Current Sensor.

Sensors (Basel). 2020-12-13

[6]
High Precision Wide Bandwidth DC Current Transducer Based on the Platiše Flux Sensor.

Sensors (Basel). 2020-7-28

[7]
Magnetoelectric Vortex Magnetic Field Sensors Based on the Metglas/PZT Laminates.

Sensors (Basel). 2020-5-15

[8]
Quasi-Static Current Measurement with Field-Modulated Spin-Valve GMR Sensors.

Sensors (Basel). 2019-4-20

[9]
High Accuracy Open-Type Current Sensor with a Differential Planar Hall Resistive Sensor.

Sensors (Basel). 2018-7-12

[10]
Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array.

Sensors (Basel). 2018-5-5

本文引用的文献

[1]
Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing.

Sensors (Basel). 2009-10-12

[2]
Geosensors to support crop production: current applications and user requirements.

Sensors (Basel). 2011-6-27

[3]
A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

Sensors (Basel). 2011-2-25

[4]
Giant Magnetoresistive Sensors for DNA Microarray.

IEEE Trans Magn. 2008-11-1

[5]
GMR biosensor arrays: correction techniques for reproducibility and enhanced sensitivity.

Biosens Bioelectron. 2010-2-6

[6]
GMR biosensor arrays: a system perspective.

Biosens Bioelectron. 2010-2-6

[7]
Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices.

Phys Rev Lett. 1988-11-21

[8]
Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange.

Phys Rev B Condens Matter. 1989-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索