Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana 70112, USA.
J Biol Chem. 2013 Jan 25;288(4):2388-402. doi: 10.1074/jbc.M112.403832. Epub 2012 Dec 4.
Ataxia-telangiectasia (A-T) is a cerebellar neurodegenerative disorder; however, the basis for the neurodegeneration in A-T is not well established. Lesions in the ubiquitin and autophagy pathways are speculated to contribute to the neurodegeneration in other neurological diseases and may have a role in A-T neurodegeneration. Our recent studies revealed that the constitutively elevated ISG15 pathway impairs targeted proteasome-mediated protein degradation in A-T cells. Here, we demonstrate that the basal autophagy pathway is activated in the ubiquitin pathway-compromised A-T cells. We also show that genotoxic stress triggers aberrant degradation of the proteasome and autophagy substrates (autophagic flux) in A-T cells. Inhibition of autophagy at an early stage using 3-methyladenine blocked UV-induced autophagic flux in A-T cells. On the other hand, bafilomycin A1, which inhibits autophagy at a late stage, failed to block UV-induced autophagic flux, suggesting that overinduction of autophagy may underlie aberrant autophagic flux in A-T cells. The ISG15-specific shRNA that restored proteasome function restores autophagic function in A-T cells. These findings suggest that autophagy compensates for the ISG15-dependent ablation of proteasome-mediated protein degradation in A-T cells. Genotoxic stress overactivates this compensatory mechanism, triggering aberrant autophagic flux in A-T cells. Supporting the model, we show that autophagy is activated in the brain tissues of human A-T patients. This highlights a plausible causal contribution of a novel "ISG15 proteinopathy" in A-T neuronal cell death.
共济失调毛细血管扩张症(A-T)是一种小脑神经退行性疾病;然而,A-T 神经退行性变的基础尚未得到很好的确立。推测泛素和自噬途径中的病变可能导致其他神经疾病中的神经退行性变,并且可能在 A-T 神经退行性变中起作用。我们最近的研究表明,持续升高的 ISG15 途径会损害 A-T 细胞中靶向蛋白酶体介导的蛋白质降解。在这里,我们证明了在泛素途径受损的 A-T 细胞中基础自噬途径被激活。我们还表明,遗传毒性应激会触发 A-T 细胞中蛋白酶体和自噬底物(自噬流)的异常降解。在早期使用 3-甲基腺嘌呤抑制自噬会阻止 A-T 细胞中 UV 诱导的自噬流。另一方面,抑制晚期自噬的巴弗洛霉素 A1 未能阻止 UV 诱导的自噬流,这表明过度诱导自噬可能是 A-T 细胞中异常自噬流的基础。恢复蛋白酶体功能的 ISG15 特异性 shRNA 恢复了 A-T 细胞中的自噬功能。这些发现表明自噬补偿了 A-T 细胞中 ISG15 依赖性蛋白酶体介导的蛋白质降解的缺失。遗传毒性应激过度激活这种代偿机制,导致 A-T 细胞中异常的自噬流。支持该模型,我们表明人类 A-T 患者的脑组织中激活了自噬。这突出了一种新型“ISG15 蛋白病”在 A-T 神经元细胞死亡中的可能因果贡献。