Suppr超能文献

动态对比增强磁共振成像(DCE-MRI)与扩散加权成像(DWI)相结合用于乳腺病变评估及异质性定量分析

DCE-MRI and DWI Integration for Breast Lesions Assessment and Heterogeneity Quantification.

作者信息

Méndez C Andrés, Pizzorni Ferrarese Francesca, Summers Paul, Petralia Giuseppe, Menegaz Gloria

机构信息

Dipartimento di Informatica, Universita degli Studi di Verona, Strada le Grazie 15, CA'Vignal, 37134 Verona, Italy.

出版信息

Int J Biomed Imaging. 2012;2012:676808. doi: 10.1155/2012/676808. Epub 2012 Nov 19.

Abstract

In order to better predict and follow treatment responses in cancer patients, there is growing interest in noninvasively characterizing tumor heterogeneity based on MR images possessing different contrast and quantitative information. This requires mechanisms for integrating such data and reducing the data dimensionality to levels amenable to interpretation by human readers. Here we propose a two-step pipeline for integrating diffusion and perfusion MRI that we demonstrate in the quantification of breast lesion heterogeneity. First, the images acquired with the two modalities are aligned using an intermodal registration. Dissimilarity-based clustering is then performed exploiting the information coming from both modalities. To this end an ad hoc distance metric is developed and tested for tuning the weighting for the two modalities. The distributions of the diffusion parameter values in subregions identified by the algorithm are extracted and compared through nonparametric testing for posterior evaluation of the tissue heterogeneity. Results show that the joint exploitation of the information brought by DCE and DWI leads to consistent results accounting for both perfusion and microstructural information yielding a greater refinement of the segmentation than the separate processing of the two modalities, consistent with that drawn manually by a radiologist with access to the same data.

摘要

为了更好地预测和跟踪癌症患者的治疗反应,基于具有不同对比度和定量信息的磁共振图像对肿瘤异质性进行无创表征的兴趣日益浓厚。这需要整合此类数据并将数据维度降低到便于人类读者解释的水平的机制。在此,我们提出了一种用于整合扩散加权成像(DWI)和灌注加权成像(DCE-MRI)的两步流程,并在乳腺病变异质性定量分析中进行了演示。首先,使用模态间配准对两种模态采集的图像进行配准。然后利用来自两种模态的信息进行基于差异的聚类。为此,开发并测试了一种特殊的距离度量,用于调整两种模态的权重。提取算法识别的子区域中扩散参数值的分布,并通过非参数检验进行比较,以对组织异质性进行事后评估。结果表明,联合利用DCE和DWI带来的信息可得出一致的结果,兼顾灌注和微观结构信息,比单独处理两种模态能更精细地分割,这与有相同数据的放射科医生手动绘制的结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/482b/3507154/e2e108a26afc/IJBI2012-676808.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验