Suppr超能文献

DCE-MRI、多参数 MRI 及多模态成像在鉴别乳腺非肿块样强化病变中的诊断性能。

Diagnostic performance of DCE-MRI, multiparametric MRI and multimodality imaging for discrimination of breast non-mass-like enhancement lesions.

机构信息

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.

Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, China.

出版信息

Br J Radiol. 2022 Aug 1;95(1136):20220211. doi: 10.1259/bjr.20220211. Epub 2022 May 10.

Abstract

OBJECTIVE

The aim of this study was to investigate and compare the diagnostic performance of dynamic contrast-enhanced (DCE)-MRI, multiparametric MRI (mpMRI), and multimodality imaging (MMI) combining mpMRI and mammography (MG) for discriminating breast non-mass-like enhancement (NME) lesions.

METHODS

This retrospective study enrolled 193 patients with 199 lesions who underwent 3.0 T MRI and MG from January 2017 to December 2019. The features of DCE-MRI, turbo inversion recovery magnitude (TIRM), and diffusion-weighted imaging (DWI) were assessed by two breast radiologists. Then, all lesions were divided into microcalcification and non-microcalcification groups to assess the features of MG. Comparisons were performed between groups using univariate analyses. Then, multivariate analyses were performed to construct diagnostic models for distinguishing NME lesions. Diagnostic performance was evaluated by using the area under the curve (AUC) and the differences between AUCs were evaluated by using the DeLong test.

RESULTS

Overall ( = 199), mpMRI outperformed DCE-MRI alone (AUC = 0.924 vs AUC = 0.884; = 0.007). Furthermore, MMI outperformed both mpMRI and MG (the microcalcification group [ = 140]: AUC = 0.997 vs. AUC = 0.978, = 0.018 and AUC = 0.997 vs. AUC = 0.912, < 0.001; the non-microcalcification group [ = 59]: AUC = 0.857 vs. AUC = 0.768, = 0.044 and AUC = 0.857 vs. AUC = 0.759, = 0.039).

CONCLUSION & ADVANCES IN KNOWLEDGE: DCE-MRI combined with DWI and TIRM information could improve the diagnostic performance for discriminating NME lesions compared with DCE-MRI alone. Furthermore, MMI combining mpMRI and MG showed better discrimination than both mpMRI and MG.

摘要

目的

本研究旨在探讨并比较动态对比增强磁共振成像(DCE-MRI)、多参数磁共振成像(mpMRI)和结合 mpMRI 与乳腺 X 线摄影(MG)的多模态成像(MMI)在鉴别乳腺非肿块样强化(NME)病变中的诊断性能。

方法

本回顾性研究纳入了 2017 年 1 月至 2019 年 12 月期间在 3.0T MRI 和 MG 检查的 193 例 199 个病灶的患者。由两位乳腺放射科医生评估 DCE-MRI、反转恢复矩(TIRM)和弥散加权成像(DWI)的特征。然后,将所有病灶分为微钙化组和非微钙化组,以评估 MG 的特征。采用单因素分析比较各组之间的特征。然后,采用多元分析构建鉴别 NME 病变的诊断模型。采用曲线下面积(AUC)评估诊断性能,并采用 DeLong 检验评估 AUC 之间的差异。

结果

总体而言(n=199),mpMRI 优于单独的 DCE-MRI(AUC=0.924 比 AUC=0.884;P=0.007)。此外,MMI 优于 mpMRI 和 MG(微钙化组[n=140]:AUC=0.997 比 AUC=0.978,P=0.018 和 AUC=0.997 比 AUC=0.912,P<0.001;非微钙化组[n=59]:AUC=0.857 比 AUC=0.768,P=0.044 和 AUC=0.857 比 AUC=0.759,P=0.039)。

结论及知识拓展

与单独的 DCE-MRI 相比,DCE-MRI 联合 DWI 和 TIRM 信息可提高鉴别 NME 病变的诊断性能。此外,结合 mpMRI 和 MG 的 MMI 显示出比单独的 mpMRI 和 MG 更好的鉴别能力。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验