Suppr超能文献

黏膜免疫在抗结核分枝杆菌感染中的作用。

Roles of Mucosal Immunity against Mycobacterium tuberculosis Infection.

作者信息

Li Wu, Deng Guangcun, Li Min, Liu Xiaoming, Wang Yujiong

机构信息

Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China ; College of Life Science, Ningxia University, 539 W. Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China.

出版信息

Tuberc Res Treat. 2012;2012:791728. doi: 10.1155/2012/791728. Epub 2012 Nov 1.

Abstract

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is one of the world's leading infectious causes of morbidity and mortality. As a mucosal-transmitted pathogen, Mtb infects humans and animals mainly through the mucosal tissue of the respiratory tract. Apart from providing a physical barrier against the invasion of pathogen, the major function of the respiratory mucosa may be to serve as the inductive sites to initiate mucosal immune responses and sequentially provide the first line of defense for the host to defend against this pathogen. A large body of studies in the animals and humans have demonstrated that the mucosal immune system, rather than the systemic immune system, plays fundamental roles in the host's defense against Mtb infection. Therefore, the development of new vaccines and novel delivery routes capable of directly inducing respiratory mucosal immunity is emphasized for achieving enhanced protection from Mtb infection. In this paper, we outline the current state of knowledge regarding the mucosal immunity against Mtb infection, including the development of TB vaccines, and respiratory delivery routes to enhance mucosal immunity are discussed.

摘要

结核分枝杆菌(Mtb)是结核病(TB)的病原体,是全球导致发病和死亡的主要感染原因之一。作为一种通过黏膜传播的病原体,Mtb主要通过呼吸道的黏膜组织感染人类和动物。除了提供抵御病原体入侵的物理屏障外,呼吸道黏膜的主要功能可能是作为启动黏膜免疫反应的诱导部位,并依次为宿主抵御这种病原体提供第一道防线。大量在动物和人类中的研究表明,黏膜免疫系统而非全身免疫系统在宿主抵御Mtb感染中发挥着基础性作用。因此,强调开发能够直接诱导呼吸道黏膜免疫的新型疫苗和新型给药途径,以实现增强对Mtb感染的保护。在本文中,我们概述了关于针对Mtb感染的黏膜免疫的当前知识状态,包括结核病疫苗的发展,并讨论了增强黏膜免疫的呼吸道给药途径。

相似文献

1
Roles of Mucosal Immunity against Mycobacterium tuberculosis Infection.
Tuberc Res Treat. 2012;2012:791728. doi: 10.1155/2012/791728. Epub 2012 Nov 1.
4
Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis.
Front Immunol. 2014 Apr 22;5:180. doi: 10.3389/fimmu.2014.00180. eCollection 2014.
5
Natural and trained innate immunity against Mycobacterium tuberculosis.
Immunobiology. 2020 May;225(3):151951. doi: 10.1016/j.imbio.2020.151951. Epub 2020 Apr 27.
8
miRNAs in immune responses to Mycobacterium tuberculosis infection.
Cancer Lett. 2018 Sep 1;431:22-30. doi: 10.1016/j.canlet.2018.05.028. Epub 2018 May 25.
9
Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection.
PLoS Pathog. 2014 May 15;10(5):e1004099. doi: 10.1371/journal.ppat.1004099. eCollection 2014 May.

引用本文的文献

1
The Role and Potential Application of IL-12 in the Immune Regulation of Tuberculosis.
Int J Mol Sci. 2025 Mar 28;26(7):3106. doi: 10.3390/ijms26073106.
2
Editorial: Tuberculosis and humoral immunity.
Front Immunol. 2025 Feb 10;16:1562567. doi: 10.3389/fimmu.2025.1562567. eCollection 2025.
4
Clarification of a unique mucosal vaccination route for improved systemic and mucosal immune response in broiler.
Heliyon. 2024 Oct 19;10(20):e39621. doi: 10.1016/j.heliyon.2024.e39621. eCollection 2024 Oct 30.
5
Next-Generation TB Vaccines: Progress, Challenges, and Prospects.
Vaccines (Basel). 2023 Jul 31;11(8):1304. doi: 10.3390/vaccines11081304.
6
Target Identification in Anti-Tuberculosis Drug Discovery.
Int J Mol Sci. 2023 Jun 22;24(13):10482. doi: 10.3390/ijms241310482.
7
Generating enhanced mucosal immunity against current challenges and new directions.
Front Immunol. 2023 Feb 21;14:1126107. doi: 10.3389/fimmu.2023.1126107. eCollection 2023.
9
BCG vaccination strategies against tuberculosis: updates and perspectives.
Hum Vaccin Immunother. 2021 Dec 2;17(12):5284-5295. doi: 10.1080/21645515.2021.2007711.

本文引用的文献

1
The role of airway epithelial cells in response to mycobacteria infection.
Clin Dev Immunol. 2012;2012:791392. doi: 10.1155/2012/791392. Epub 2012 Apr 18.
3
Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets.
FEMS Microbiol Rev. 2012 Mar;36(2):463-85. doi: 10.1111/j.1574-6976.2011.00302.x. Epub 2011 Sep 15.
4
Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis.
Rheumatology (Oxford). 2012 Jan;51(1):37-46. doi: 10.1093/rheumatology/ker316. Epub 2011 Nov 10.
5
Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells.
BMC Microbiol. 2011 Oct 24;11:237. doi: 10.1186/1471-2180-11-237.
6
Cellular immune responses to nine Mycobacterium tuberculosis vaccine candidates following intranasal vaccination.
PLoS One. 2011;6(7):e22718. doi: 10.1371/journal.pone.0022718. Epub 2011 Jul 25.
7
Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis.
Vaccine. 2011 Sep 16;29(40):6959-66. doi: 10.1016/j.vaccine.2011.07.039. Epub 2011 Jul 23.
8
Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization.
Biochem Biophys Res Commun. 2011 Aug 5;411(3):642-7. doi: 10.1016/j.bbrc.2011.07.013. Epub 2011 Jul 18.
9
Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis.
BMC Res Notes. 2011 Jul 21;4:247. doi: 10.1186/1756-0500-4-247.
10
Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages.
DNA Cell Biol. 2012 Feb;31(2):171-9. doi: 10.1089/dna.2011.1290. Epub 2011 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验