Suppr超能文献

使用投影算符从线性噪声近似中严格消除快速随机变量。

Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators.

作者信息

Thomas Philipp, Grima Ramon, Straube Arthur V

机构信息

Department of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041110. doi: 10.1103/PhysRevE.86.041110. Epub 2012 Oct 8.

Abstract

The linear noise approximation (LNA) offers a simple means by which one can study intrinsic noise in monostable biochemical networks. Using simple physical arguments, we have recently introduced the slow-scale LNA (ssLNA), which is a reduced version of the LNA under conditions of timescale separation. In this paper we present the first rigorous derivation of the ssLNA using the projection operator technique and show that the ssLNA follows uniquely from the standard LNA under the same conditions of timescale separation as those required for the deterministic quasi-steady-state approximation. We also show that the large molecule number limit of several common stochastic model reduction techniques under timescale separation conditions constitutes a special case of the ssLNA.

摘要

线性噪声近似(LNA)提供了一种简单的方法,通过它可以研究单稳态生化网络中的内在噪声。利用简单的物理论据,我们最近引入了慢尺度LNA(ssLNA),它是在时间尺度分离条件下LNA的简化版本。在本文中,我们使用投影算子技术首次对ssLNA进行了严格推导,并表明在与确定性准稳态近似所需相同的时间尺度分离条件下,ssLNA唯一地从标准LNA得出。我们还表明,在时间尺度分离条件下几种常见随机模型约简技术的大分子数极限构成了ssLNA的一个特例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验