Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America.
Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America.
PLoS Comput Biol. 2023 Feb 7;19(2):e1010852. doi: 10.1371/journal.pcbi.1010852. eCollection 2023 Feb.
The spread of seizures across brain networks is the main impairing factor, often leading to loss-of-consciousness, in people with epilepsy. Despite advances in recording and modeling brain activity, uncovering the nature of seizure spreading dynamics remains an important challenge to understanding and treating pharmacologically resistant epilepsy. To address this challenge, we introduce a new probabilistic model that captures the spreading dynamics in patient-specific complex networks. Network connectivity and interaction time delays between brain areas were estimated from white-matter tractography. The model's computational tractability allows it to play an important complementary role to more detailed models of seizure dynamics. We illustrate model fitting and predictive performance in the context of patient-specific Epileptor networks. We derive the phase diagram of spread size (order parameter) as a function of brain excitability and global connectivity strength, for different patient-specific networks. Phase diagrams allow the prediction of whether a seizure will spread depending on excitability and connectivity strength. In addition, model simulations predict the temporal order of seizure spread across network nodes. Furthermore, we show that the order parameter can exhibit both discontinuous and continuous (critical) phase transitions as neural excitability and connectivity strength are varied. Existence of a critical point, where response functions and fluctuations in spread size show power-law divergence with respect to control parameters, is supported by mean-field approximations and finite-size scaling analyses. Notably, the critical point separates two distinct regimes of spreading dynamics characterized by unimodal and bimodal spread-size distributions. Our study sheds new light on the nature of phase transitions and fluctuations in seizure spreading dynamics. We expect it to play an important role in the development of closed-loop stimulation approaches for preventing seizure spread in pharmacologically resistant epilepsy. Our findings may also be of interest to related models of spreading dynamics in epidemiology, biology, finance, and statistical physics.
大脑网络中癫痫发作的传播是主要的损害因素,常导致癫痫患者意识丧失。尽管在记录和建模大脑活动方面取得了进展,但揭示癫痫发作传播动力学的本质仍然是理解和治疗抗药性癫痫的重要挑战。为了应对这一挑战,我们引入了一种新的概率模型,该模型可以捕捉特定于患者的复杂网络中的传播动力学。通过白质束追踪法估计大脑区域之间的网络连通性和相互作用时间延迟。该模型的计算可处理能力使其能够在癫痫动力学的更详细模型中发挥重要的补充作用。我们在特定于患者的 Epileptor 网络中演示了模型拟合和预测性能。我们根据不同的特定于患者的网络,将传播大小(序参数)的相图作为大脑兴奋性和全局连通性强度的函数进行推导。相图允许根据兴奋性和连通性强度预测癫痫是否会传播。此外,模型模拟预测了癫痫在网络节点之间的传播时间顺序。此外,我们还表明,随着神经兴奋性和连通性强度的变化,序参数可以表现出不连续和连续(临界)相变。临界点的存在,即响应函数和传播大小的波动随控制参数呈幂律发散,得到了平均场近似和有限尺寸标度分析的支持。值得注意的是,临界点将传播动力学的两种不同模式分开,其特征是传播大小分布的单峰和双峰。我们的研究揭示了癫痫发作传播动力学中相变和波动的本质。我们预计它将在开发用于预防抗药性癫痫中癫痫传播的闭环刺激方法中发挥重要作用。我们的发现可能也与流行病学、生物学、金融和统计物理学中传播动力学的相关模型有关。