Suppr超能文献

基于局部 k 空间邻域(LORAKS)的约束性磁共振成像低秩建模。

Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI.

出版信息

IEEE Trans Med Imaging. 2014 Mar;33(3):668-81. doi: 10.1109/TMI.2013.2293974.

Abstract

Recent theoretical results on low-rank matrix reconstruction have inspired significant interest in low-rank modeling of MRI images. Existing approaches have focused on higher-dimensional scenarios with data available from multiple channels, timepoints, or image contrasts. The present work demonstrates that single-channel, single-contrast, single-timepoint k-space data can also be mapped to low-rank matrices when the image has limited spatial support or slowly varying phase. Based on this, we develop a novel and flexible framework for constrained image reconstruction that uses low-rank matrix modeling of local k-space neighborhoods (LORAKS). A new regularization penalty and corresponding algorithm for promoting low-rank are also introduced. The potential of LORAKS is demonstrated with simulated and experimental data for a range of denoising and sparse-sampling applications. LORAKS is also compared against state-of-the-art methods like homodyne reconstruction, l1-norm minimization, and total variation minimization, and is demonstrated to have distinct features and advantages. In addition, while calibration-based support and phase constraints are commonly used in existing methods, the LORAKS framework enables calibrationless use of these constraints.

摘要

近期关于低秩矩阵重构的理论成果激发了人们对 MRI 图像的低秩建模的极大兴趣。现有的方法主要集中在具有多通道、多个时间点或图像对比数据的高维场景中。本研究表明,当图像的空间支持度有限或相位变化缓慢时,单通道、单对比度、单时间点的 k 空间数据也可以映射到低秩矩阵中。基于此,我们开发了一种新颖而灵活的约束图像重建框架,该框架使用局部 k 空间邻域(LORAKS)的低秩矩阵建模。同时,还引入了一种新的正则化惩罚项和相应的算法来促进低秩。通过对一系列去噪和稀疏采样应用的模拟和实验数据,展示了 LORAKS 的潜力。还将 LORAKS 与同态重建、l1 范数最小化和全变差最小化等最先进的方法进行了比较,结果表明 LORAKS 具有独特的特征和优势。此外,虽然现有的方法通常使用基于校准的支撑和相位约束,但 LORAKS 框架可以实现这些约束的无校准使用。

相似文献

9
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.

引用本文的文献

8
Low-rank iterative infilling for zero echo-time (ZTE) imaging.用于零回波时间(ZTE)成像的低秩迭代填充
Magn Reson Med. 2025 Mar;93(3):1149-1162. doi: 10.1002/mrm.30345. Epub 2024 Nov 4.

本文引用的文献

5
Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.利用稀疏性和秩亏来改进动态 MRI 重建。
Magn Reson Imaging. 2013 Jun;31(5):789-95. doi: 10.1016/j.mri.2012.10.026. Epub 2012 Dec 5.
6
Denoising MR spectroscopic imaging data with low-rank approximations.基于低秩逼近的磁共振波谱成像数据去噪。
IEEE Trans Biomed Eng. 2013 Jan;60(1):78-89. doi: 10.1109/TBME.2012.2223466. Epub 2012 Oct 9.
8
Separate magnitude and phase regularization via compressed sensing.通过压缩感知实现幅度和相位正则化。
IEEE Trans Med Imaging. 2012 Sep;31(9):1713-23. doi: 10.1109/TMI.2012.2196707. Epub 2012 Apr 26.
10
Parallel reconstruction using null operations.并行重建使用空操作。
Magn Reson Med. 2011 Nov;66(5):1241-53. doi: 10.1002/mrm.22899. Epub 2011 May 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验