Suppr超能文献

基于时空域低秩分解的肺部肿瘤追踪加速动态磁共振成像:基于模拟和初步前瞻性欠采样 MRI 的可行性研究。

Accelerating dynamic magnetic resonance imaging (MRI) for lung tumor tracking based on low-rank decomposition in the spatial-temporal domain: a feasibility study based on simulation and preliminary prospective undersampled MRI.

机构信息

Department of Radiological Science, University of California, Los Angeles, California; Department of Radiation Oncology, University of California, Los Angeles, California.

Department of Radiological Science, University of California, Los Angeles, California.

出版信息

Int J Radiat Oncol Biol Phys. 2014 Mar 1;88(3):723-31. doi: 10.1016/j.ijrobp.2013.11.217. Epub 2014 Jan 9.

Abstract

PURPOSE

To evaluate a low-rank decomposition method to reconstruct down-sampled k-space data for the purpose of tumor tracking.

METHODS AND MATERIALS

Seven retrospective lung cancer patients were included in the simulation study. The fully-sampled k-space data were first generated from existing 2-dimensional dynamic MR images and then down-sampled by 5 × -20 × before reconstruction using a Cartesian undersampling mask. Two methods, a low-rank decomposition method using combined dynamic MR images (k-t SLR based on sparsity and low-rank penalties) and a total variation (TV) method using individual dynamic MR frames, were used to reconstruct images. The tumor trajectories were derived on the basis of autosegmentation of the resultant images. To further test its feasibility, k-t SLR was used to reconstruct prospective data of a healthy subject. An undersampled balanced steady-state free precession sequence with the same undersampling mask was used to acquire the imaging data.

RESULTS

In the simulation study, higher imaging fidelity and low noise levels were achieved with the k-t SLR compared with TV. At 10 × undersampling, the k-t SLR method resulted in an average normalized mean square error <0.05, as opposed to 0.23 by using the TV reconstruction on individual frames. Less than 6% showed tracking errors >1 mm with 10 × down-sampling using k-t SLR, as opposed to 17% using TV. In the prospective study, k-t SLR substantially reduced reconstruction artifacts and retained anatomic details.

CONCLUSIONS

Magnetic resonance reconstruction using k-t SLR on highly undersampled dynamic MR imaging data results in high image quality useful for tumor tracking. The k-t SLR was superior to TV by better exploiting the intrinsic anatomic coherence of the same patient. The feasibility of k-t SLR was demonstrated by prospective imaging acquisition and reconstruction.

摘要

目的

评估一种低秩分解方法,以重建下采样的 k 空间数据,用于肿瘤跟踪。

方法与材料

本研究纳入了 7 例回顾性肺癌患者。首先从现有的二维动态磁共振图像中生成全采样 k 空间数据,然后在重建前使用笛卡尔欠采样掩模对其进行 5×-20×下采样。使用两种方法对图像进行重建,一种是使用联合动态磁共振图像的低秩分解方法(基于稀疏性和低秩惩罚的 k-t SLR),另一种是使用单个动态磁共振帧的全变分(TV)方法。根据所得图像的自动分割来推导肿瘤轨迹。为了进一步测试其可行性,使用 k-t SLR 重建健康受试者的前瞻性数据。使用相同的欠采样掩模的欠采样平衡稳态自由进动序列获取成像数据。

结果

在模拟研究中,与 TV 相比,k-t SLR 实现了更高的成像保真度和更低的噪声水平。在 10×下采样时,k-t SLR 方法的平均归一化均方误差<0.05,而使用 TV 对单个帧进行重建的平均归一化均方误差为 0.23。使用 k-t SLR 进行 10×下采样时,不到 6%的患者出现>1mm 的跟踪误差,而使用 TV 的患者有 17%出现>1mm 的跟踪误差。在前瞻性研究中,k-t SLR 显著减少了重建伪影并保留了解剖细节。

结论

在高度欠采样的动态磁共振成像数据上使用 k-t SLR 进行磁共振重建可获得高质量图像,有助于肿瘤跟踪。k-t SLR 通过更好地利用同一患者的固有解剖一致性,优于 TV。前瞻性成像采集和重建证明了 k-t SLR 的可行性。

相似文献

引用本文的文献

6
Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation.自动三维磁共振成像胰腺分割的可行性
Adv Radiat Oncol. 2016 Jul-Sep;1(3):182-193. doi: 10.1016/j.adro.2016.05.002. Epub 2016 May 30.

本文引用的文献

3
Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.利用稀疏性和秩亏来改进动态 MRI 重建。
Magn Reson Imaging. 2013 Jun;31(5):789-95. doi: 10.1016/j.mri.2012.10.026. Epub 2012 Dec 5.
9
MRI-guided tumor tracking in lung cancer radiotherapy.MRI 引导下的肺癌放疗肿瘤追踪。
Phys Med Biol. 2011 Jul 7;56(13):3773-85. doi: 10.1088/0031-9155/56/13/003. Epub 2011 May 31.
10
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.利用稀疏性和低秩结构的加速动态 MRI:k-t SLR。
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验