Suppr超能文献

通过具有明确定义微图案表面的形貌,实现 MSC 中焦点黏附成熟位点和肌动蛋白丝激活的转换。

The switching of focal adhesion maturation sites and actin filament activation for MSCs by topography of well-defined micropatterned surfaces.

机构信息

Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-gu, Tokyo 113-8656, Japan.

出版信息

Biomaterials. 2013 Feb;34(7):1764-71. doi: 10.1016/j.biomaterials.2012.11.031. Epub 2012 Dec 6.

Abstract

Securing robust cell adhesion between cells and biomaterials is one of key considerations for tissue engineering. However, the cell adhesion investigation by the biophysical effects such as topography or rigidity of substrates has only been recently reported. In this study, we examined the spatial property of focal adhesions by changing the height of micropatterns in two kinds of microtopography (grid and post) and the stiffness of the substrates. We found that the focal adhesion localization is highly regulated by topographical variation (height) of gird micropattens but not the rigidity of substrates or the function of actin cytoskeleton, although the latters strongly influence the focal adhesion size or area. In detail, the change of the height of the grid micropatterns results in the switching of focal adhesion sites; as the height increases, the localization of focal adhesion is switched from top to bottom areas. This study demonstrates that the localization of focal adhesion on well-defined micropatterned substrates is critically determined by the topographical variation in the micropatterns.

摘要

确保细胞与生物材料之间的牢固细胞黏附是组织工程的关键考虑因素之一。然而,最近才报道了通过底物的形貌或刚性等生物物理效应来研究细胞黏附。在这项研究中,我们通过改变两种微形貌(网格和柱)和基底的刚度来改变微图案的高度,从而研究了粘着斑的空间特性。我们发现,粘着斑的定位受到网格微图案高度(高度)的强烈调节,但不受基底的刚性或肌动蛋白细胞骨架的功能调节,尽管后者强烈影响粘着斑的大小或面积。具体而言,网格微图案高度的变化会导致粘着斑部位的切换;随着高度的增加,粘着斑的定位从顶部切换到底部区域。这项研究表明,在明确定义的微图案化基底上粘着斑的定位是由微图案的形貌变化决定的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验