Institute for Tropical Health and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
Microb Pathog. 2013 May;58:29-34. doi: 10.1016/j.micpath.2012.11.011. Epub 2012 Dec 5.
The gram-negative bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a world wide-distributed zoonotic disease that represents a serious problem for animal and human health. There is no human-to-human contagion and, since there is no human vaccine, animal vaccination is essential to control brucellosis. However, current vaccines (all developed empirically) do not provide 100% protection and are infectious in humans. Attempts to generate new vaccines by obtaining mutants lacking the lipopolysaccharide O-polysaccharide, in purine metabolism or in Brucella type IV secretion system have not been successful. Here we propose a new approach to develop brucellosis vaccines based on the concept that Brucella surface molecules evade efficient detection by innate immunity, thus delaying protective Th1 responses and opening a time window to reach sheltered intracellular compartments. We showed recently that a branch of the core oligosaccharide section of Brucella lipopolysaccharide hampers recognition by TLR4-MD2. Mutation of glycosyltransferase WadC, involved in the synthesis of this branch, results in a lipopolysaccharide that, while keeping the O-polysaccharide essential for optimal protection, shows a truncated core, is more efficiently recognized by MD2 and triggers an increased cytokine response. In keeping with this, the wadC mutant is attenuated in dendritic cells and mice. In the mouse model of brucellosis vaccines, the Brucella abortus wadC mutant conferred protection similar to that provided by S19, the best cattle vaccine available. The properties of the wadC mutant provide the proof of concept for this new approach and open the way for more effective brucellosis vaccines.
布鲁氏菌属的革兰氏阴性细菌是兼性细胞内寄生虫,可引起布鲁氏菌病,这是一种广泛分布于世界各地的人畜共患病,对动物和人类健康构成严重威胁。该疾病不会在人与人之间传播,而且由于没有人类疫苗,因此动物疫苗对于控制布鲁氏菌病至关重要。然而,目前的疫苗(全部是经验性开发的)无法提供 100%的保护,而且对人类具有传染性。试图通过获得缺乏脂多糖 O-多糖、嘌呤代谢或布鲁氏菌 IV 型分泌系统的突变体来开发新疫苗的尝试均未成功。在这里,我们基于以下概念提出了一种开发布鲁氏菌病疫苗的新方法:即布鲁氏菌表面分子逃避固有免疫的有效检测,从而延迟保护性 Th1 反应,并为进入隐蔽的细胞内隔室开辟时间窗口。我们最近表明,布鲁氏菌脂多糖核心寡糖部分的一个分支阻碍了 TLR4-MD2 的识别。参与该分支合成的糖基转移酶 WadC 的突变导致脂多糖虽然保持了对最佳保护至关重要的 O-多糖,但具有截断的核心,更有效地被 MD2 识别,并引发更高的细胞因子反应。与此一致的是,wadC 突变体在树突状细胞和小鼠中表现出衰减。在布鲁氏菌病疫苗的小鼠模型中,布鲁氏菌 abortus wadC 突变体提供的保护与可用的最佳牛疫苗 S19 相当。wadC 突变体的特性为这种新方法提供了概念验证,并为更有效的布鲁氏菌病疫苗开辟了道路。