文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

针对流行性传染病的预防性疫苗投递系统。

Prophylactic vaccine delivery systems against epidemic infectious diseases.

机构信息

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.

出版信息

Adv Drug Deliv Rev. 2021 Sep;176:113867. doi: 10.1016/j.addr.2021.113867. Epub 2021 Jul 17.


DOI:10.1016/j.addr.2021.113867
PMID:34280513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8285224/
Abstract

Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.

摘要

预防性疫苗已经从传统的全细胞疫苗发展为更安全的亚单位疫苗。然而,亚单位疫苗仍然面临着免疫原性差、效率低等问题,而传统佐剂通常无法满足特定的反应需求。先进的递药系统对于克服这些障碍非常重要;它们具有良好的安全性和有效性、可调的特性、精确的定位和免疫调节能力。然而,目前还没有对涵盖广泛传染性病原体的递药系统进行系统总结。我们在此总结和比较了主要或流行传染病的递药系统,这些传染病由细菌、病毒、真菌和寄生虫引起。我们还包括了新获得许可的疫苗(例如,COVID-19 疫苗)和即将获得许可的疫苗。此外,我们强调了具有高效、交叉保护或针对流行病原体的长期保护作用的先进递药系统,并对未来预防性疫苗的发展提出了展望和思考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/936fb6adbc84/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/fc42db5fa1c2/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/2fb9050200d7/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/b00b30a5ab56/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/75a93963c25f/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/344b67d65c1a/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/f2ff18333cd6/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/20e7060bed1d/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/e6ccc6c121eb/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/936fb6adbc84/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/fc42db5fa1c2/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/2fb9050200d7/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/b00b30a5ab56/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/75a93963c25f/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/344b67d65c1a/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/f2ff18333cd6/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/20e7060bed1d/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/e6ccc6c121eb/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e2/8285224/936fb6adbc84/gr8_lrg.jpg

相似文献

[1]
Prophylactic vaccine delivery systems against epidemic infectious diseases.

Adv Drug Deliv Rev. 2021-9

[2]
Advances in the design and delivery of RNA vaccines for infectious diseases.

Adv Drug Deliv Rev. 2024-10

[3]
Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases.

Expert Opin Drug Deliv. 2021-2

[4]
Nanoparticle Vaccines Against Infectious Diseases.

Front Immunol. 2018-10-4

[5]
Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines.

Mol Pharm. 2021-8-2

[6]
Carbohydrate-containing nanoparticles as vaccine adjuvants.

Expert Rev Vaccines. 2021-7

[7]
COVID-19: An unprecedented challenge and an opportunity for change.

Adv Drug Deliv Rev. 2021-4

[8]
Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases.

Adv Drug Deliv Rev. 2018-7-6

[9]
Messenger RNA vaccines against SARS-CoV-2.

Cell. 2021-3-18

[10]
The Bacterial Mucosal Immunotherapy MV130 Protects Against SARS-CoV-2 Infection and Improves COVID-19 Vaccines Immunogenicity.

Front Immunol. 2021

引用本文的文献

[1]
Nanomaterial Adjuvants for Veterinary Vaccines: Mechanisms and Applications.

Research (Wash D C). 2025-7-8

[2]
Immunologically effective biomaterials-enhanced vaccines against infection of pathogenic microorganisms.

Biosaf Health. 2022-12-2

[3]
Efficient Production of Self-Assembled Bioconjugate Nanovaccines against O2 Serotype in Engineered .

Nanomaterials (Basel). 2024-4-21

[4]
One-step preparation of a self-assembled bioconjugate nanovaccine against .

Virulence. 2023-12

[5]
Vaccines in Breast Cancer: Challenges and Breakthroughs.

Diagnostics (Basel). 2023-6-26

[6]
Identification of potential antigenic peptides of Brucella through proteome and peptidome.

Vet Med Sci. 2023-1

[7]
Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems.

Pathogens. 2022-11-30

[8]
Particulate Cell Wall Materials of as Vaccine Adjuvant.

Vet Sci. 2022-12-15

[9]
Development of Turmeric Oil-Loaded Chitosan/Alginate Nanocapsules for Cytotoxicity Enhancement against Breast Cancer.

Polymers (Basel). 2022-4-29

[10]
COVID-19 vaccine development: milestones, lessons and prospects.

Signal Transduct Target Ther. 2022-5-3

本文引用的文献

[1]
Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

Lancet. 2021-3-6

[2]
Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients.

Lancet. 2021-3-6

[3]
A new candidate vaccine for human brucellosis based on influenza viral vectors: a preliminary investigation for the development of an immunization schedule in a guinea pig model.

Infect Dis Poverty. 2021-2-16

[4]
A chemokine-fusion vaccine targeting immature dendritic cells elicits elevated antibody responses to malaria sporozoites in infant macaques.

Sci Rep. 2021-1-13

[5]
Current State of the First COVID-19 Vaccines.

Vaccines (Basel). 2021-1-8

[6]
Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.

N Engl J Med. 2021-2-4

[7]
Size-Dependent Antibacterial Immunity of Protoplast-Derived Particulate Vaccines.

Int J Nanomedicine. 2020

[8]
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.

N Engl J Med. 2020-12-31

[9]
Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses.

Immunity. 2020-11-25

[10]
Development of Human Vectored Brucellosis Vaccine Formulation: Assessment of Safety and Protectiveness of Influenza Viral Vectors Expressing Immunodominant Proteins in Mice and Guinea Pigs.

Biomed Res Int. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索