原核生物中适应性免疫的病毒多样性阈值。
Viral diversity threshold for adaptive immunity in prokaryotes.
机构信息
Departments of Microbiology and Immunobiology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
出版信息
mBio. 2012 Dec 4;3(6):e00456-12. doi: 10.1128/mBio.00456-12.
UNLABELLED
Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas-) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted.
IMPORTANCE
A remarkable recent discovery in microbiology is that bacteria and archaea possess systems conferring immunological memory and adaptive immunity. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (CRISPR-Cas) are genomic sensors that allow prokaryotes to acquire DNA fragments from invading viruses and plasmids. Providing immunological memory, these stored fragments destroy matching DNA in future viral and plasmid invasions. CRISPR-Cas systems also provide adaptive immunity, keeping up with mutating viruses and plasmids by continually acquiring new DNA fragments. Surprisingly, less than 50% of mesophilic bacteria, in contrast to almost 90% of thermophilic bacteria and Archaea, maintain CRISPR-Cas immunity. Using mathematical modeling, we probe this dichotomy, showing how increased viral mutation rates can explain the reduced prevalence of CRISPR-Cas systems in mesophiles. Rapidly mutating viruses outrun CRISPR-Cas immune systems, likely decreasing their prevalence in bacterial populations. Thus, viral adaptability may select against, rather than for, immune adaptability in prokaryotes.
未加标签
细菌和古菌不断受到快速多样化的病毒和质粒的攻击。许多原核生物维持着适应性免疫系统,称为成簇规律间隔短回文重复(CRISPR)和 CRISPR 相关基因(Cas)。CRISPR-Cas 系统是基因组传感器,可连续获取病毒和质粒 DNA 片段(间隔物),随后用于靶向和切割后续基因组入侵中匹配的病毒和质粒 DNA,提供关键的免疫记忆。与超过 90%的测序古菌相比,只有 50%的测序细菌具有 CRISPR-Cas 免疫能力。为了探究为什么一半的细菌缺乏 CRISPR-Cas 免疫能力,我们结合了比较基因组学和数学建模。对数百种不同的原核生物基因组的分析表明,CRISPR-Cas 系统在嗜热菌中比在中温菌中更为普遍。由于测序细菌不成比例地是中温菌,而测序古菌主要是嗜热菌,因此 CRISPR-Cas 的存在似乎更多地取决于环境温度,而不是细菌-古菌分类。中温菌的突变率通常比嗜热菌高几倍。为了定量测试病毒的快速突变是否导致微生物失去 CRISPR-Cas 系统,我们开发了一种病毒-CRISPR 共同进化的随机模型。该模型使 CRISPR-Cas 阳性(CRISPR-Cas+)原核生物与 CRISPR-Cas 阴性(CRISPR-Cas-)原核生物竞争,不断权衡 CRISPR-Cas 免疫提供的抗病毒益处与其适应度成本。在参数空间中跟踪这种成本效益分析揭示了病毒突变率的阈值,超过该阈值,CRISPR-Cas 就无法提供足够的免疫力,并从宿主群体中清除。这些结果提供了一个简单的、可测试的病毒多样性假设,以解释为什么中温细菌不成比例地缺乏 CRISPR-Cas 免疫能力。更一般地说,还预测了生物传感器适应性的基本限制(拉马克进化)。
重要性
微生物学的一个引人注目的最新发现是,细菌和古菌拥有赋予免疫记忆和适应性免疫的系统。成簇规律间隔短回文重复(CRISPR)和 CRISPR 相关基因(CRISPR-Cas)是基因组传感器,使原核生物能够从入侵的病毒和质粒中获取 DNA 片段。这些存储的片段提供免疫记忆,在未来的病毒和质粒入侵中破坏匹配的 DNA。CRISPR-Cas 系统还提供适应性免疫,通过不断获取新的 DNA 片段来跟上不断突变的病毒和质粒。令人惊讶的是,不到 50%的中温菌,而近 90%的嗜热菌和古菌都保持着 CRISPR-Cas 免疫能力。通过数学建模,我们探究了这种二分法,表明病毒突变率的增加如何解释 CRISPR-Cas 系统在中温菌中的流行度降低。快速突变的病毒超越了 CRISPR-Cas 免疫系统,可能会降低其在细菌种群中的流行度。因此,病毒的适应性可能会选择而不是促进原核生物的免疫适应性。