Suppr超能文献

CRISPR-Cas:原核生物中基于 RNA 的适应性免疫系统的进化。

CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

机构信息

National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, USA.

出版信息

RNA Biol. 2013 May;10(5):679-86. doi: 10.4161/rna.24022. Epub 2013 Feb 25.

Abstract

The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

摘要

CRISPR-Cas(成簇规律间隔短回文重复序列,CRISPR 相关基因)是细菌和古菌中的一种适应性免疫系统,通过一种独特的自我非自我识别机制发挥作用,该机制部分类似于真核 RNA 干扰(RNAi)的机制。CRISPR-Cas 系统将病毒或质粒 DNA 的片段整合到 CRISPR 重复盒中,并利用这些间隔区的加工转录本作为向导 RNA 来切割同源的外来 DNA 或 RNA。然而,Cas 蛋白与参与 RNAi 的蛋白不具有同源性,并且包含众多高度分化的家族。大多数 Cas 蛋白含有 RNA 识别基序(RRM)的多种变体,RRM 是一种广泛存在的 RNA 结合结构域。尽管 cas 基因的进化速度很快,但大多数 Cas 蛋白中 RRM 的不同版本为三种不同类型的 CRISPR-cas 系统的进化提供了一个简单的方案。除了几种直接参与免疫反应的蛋白外,cas 基因还编码多种与原核毒素具有同源性的蛋白,这些毒素通常具有核酸酶活性。与 CRISPR-Cas 系统相关的预测毒素包括必需的 Cas2 蛋白、COG1517 蛋白,除了配体结合域和螺旋-转角-螺旋域外,这些蛋白通常包含不同的核酸酶结构域和其他几种预测的核酸酶。CRISPR-Cas 免疫系统与预测毒素的紧密关联,这些毒素在激活时会诱导休眠或细胞死亡,这表明适应性免疫和休眠/自杀反应在功能上是耦合的。这种偶联可能表现在诱导持久状态,并可能为免疫系统更有效地发挥作用提供条件,或者在免疫失败时触发细胞死亡。

相似文献

1
CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.
RNA Biol. 2013 May;10(5):679-86. doi: 10.4161/rna.24022. Epub 2013 Feb 25.
3
Viral diversity threshold for adaptive immunity in prokaryotes.
mBio. 2012 Dec 4;3(6):e00456-12. doi: 10.1128/mBio.00456-12.
5
CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity.
J Mol Biol. 2019 Jan 4;431(1):3-20. doi: 10.1016/j.jmb.2018.08.030. Epub 2018 Sep 5.
6
CRISPR-Cas systems: beyond adaptive immunity.
Nat Rev Microbiol. 2014 May;12(5):317-26. doi: 10.1038/nrmicro3241. Epub 2014 Apr 7.
7
Adaptation in CRISPR-Cas Systems.
Mol Cell. 2016 Mar 17;61(6):797-808. doi: 10.1016/j.molcel.2016.01.030. Epub 2016 Mar 3.
8
Approaches to study CRISPR RNA biogenesis and the key players involved.
Methods. 2020 Feb 1;172:12-26. doi: 10.1016/j.ymeth.2019.07.015. Epub 2019 Jul 17.
9
Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.
Nat Microbiol. 2016 Jun 6;1(8):16081. doi: 10.1038/nmicrobiol.2016.81.
10
Unravelling the structural and mechanistic basis of CRISPR-Cas systems.
Nat Rev Microbiol. 2014 Jul;12(7):479-92. doi: 10.1038/nrmicro3279. Epub 2014 Jun 9.

引用本文的文献

1
Catalytic-state structure of Candidatus Hydrogenedentes Cas12b revealed by cryo-EM studies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf519.
2
Prophages are infrequently associated with antibiotic resistance in clinical isolates.
mSphere. 2025 Mar 25;10(3):e0090424. doi: 10.1128/msphere.00904-24. Epub 2025 Feb 13.
4
Advances and applications of CRISPR/Cas-mediated interference in .
Eng Microbiol. 2023 Nov 2;4(1):100123. doi: 10.1016/j.engmic.2023.100123. eCollection 2024 Mar.
5
Genome mining approach reveals the CRISPR-Cas systems features and characteristics in strains.
Heliyon. 2024 Nov 8;10(22):e39920. doi: 10.1016/j.heliyon.2024.e39920. eCollection 2024 Nov 30.
9
Harnessing multiplex crRNA enables an amplification-free/CRISPR-Cas12a-based diagnostic methodology for .
Microbiol Spectr. 2024 Jan 11;12(1):e0301423. doi: 10.1128/spectrum.03014-23. Epub 2023 Nov 28.
10
RPA-CRISPR/Cas12a-Based Detection of .
Animals (Basel). 2023 Oct 25;13(21):3317. doi: 10.3390/ani13213317.

本文引用的文献

2
3
A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus.
Mol Microbiol. 2013 Mar;87(5):1088-99. doi: 10.1111/mmi.12152. Epub 2013 Feb 3.
4
RNA-guided human genome engineering via Cas9.
Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.
5
Multiplex genome engineering using CRISPR/Cas systems.
Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.
6
Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):E241-9. doi: 10.1073/pnas.1216039110. Epub 2012 Dec 24.
7
Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.
PLoS One. 2012;7(12):e51663. doi: 10.1371/journal.pone.0051663. Epub 2012 Dec 11.
8
Viral diversity threshold for adaptive immunity in prokaryotes.
mBio. 2012 Dec 4;3(6):e00456-12. doi: 10.1128/mBio.00456-12.
10
Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information.
Virology. 2012 Dec 20;434(2):202-9. doi: 10.1016/j.virol.2012.10.003. Epub 2012 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验