Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
Nature. 2012 Dec 6;492(7427):72-8. doi: 10.1038/nature11649.
The medial entorhinal cortex (MEC) is part of the brain's circuit for dynamic representation of self-location. The metric of this representation is provided by grid cells, cells with spatial firing fields that tile environments in a periodic hexagonal pattern. Limited anatomical sampling has obscured whether the grid system operates as a unified system or a conglomerate of independent modules. Here we show with recordings from up to 186 grid cells in individual rats that grid cells cluster into a small number of layer-spanning anatomically overlapping modules with distinct scale, orientation, asymmetry and theta-frequency modulation. These modules can respond independently to changes in the geometry of the environment. The discrete topography of the grid-map, and the apparent autonomy of the modules, differ from the graded topography of maps for continuous variables in several sensory systems, raising the possibility that the modularity of the grid map is a product of local self-organizing network dynamics.
内侧缰状回(MEC)是大脑自我定位动态表示回路的一部分。这种表示的度量标准由网格细胞提供,这些细胞具有空间发射场,以周期性六边形模式覆盖环境。有限的解剖采样掩盖了网格系统是否作为一个统一的系统或独立模块的集合来运行。在这里,我们通过在单个大鼠中记录多达 186 个网格细胞表明,网格细胞聚集到少数几个具有不同比例、方向、不对称性和θ频率调制的层间解剖重叠模块中。这些模块可以独立响应环境几何形状的变化。网格图的离散拓扑结构和模块的明显自主性与几个感觉系统中连续变量的图谱的渐变拓扑结构不同,这增加了网格图的模块化是局部自组织网络动力学的产物的可能性。