Suppr超能文献

依赖脯氨酸的调控梭状芽胞杆菌 Stickland 代谢。

Proline-dependent regulation of Clostridium difficile Stickland metabolism.

机构信息

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.

出版信息

J Bacteriol. 2013 Feb;195(4):844-54. doi: 10.1128/JB.01492-12. Epub 2012 Dec 7.

Abstract

Clostridium difficile, a proteolytic Gram-positive anaerobe, has emerged as a significant nosocomial pathogen. Stickland fermentation reactions are thought to be important for growth of C. difficile and appear to influence toxin production. In Stickland reactions, pairs of amino acids donate and accept electrons, generating ATP and reducing power in the process. Reduction of the electron acceptors proline and glycine requires the d-proline reductase (PR) and the glycine reductase (GR) enzyme complexes, respectively. Addition of proline in the medium increases the level of PR protein but decreases the level of GR. We report the identification of PrdR, a protein that activates transcription of the PR-encoding genes in the presence of proline and negatively regulates the GR-encoding genes. The results suggest that PrdR is a central metabolism regulator that controls preferential utilization of proline and glycine to produce energy via the Stickland reactions.

摘要

艰难梭菌是一种蛋白水解革兰氏阳性厌氧菌,已成为重要的医院获得性病原体。Stickland 发酵反应被认为对艰难梭菌的生长很重要,并且似乎影响毒素的产生。在 Stickland 反应中,氨基酸对捐献和接受电子,在这个过程中产生 ATP 和还原力。电子受体脯氨酸和甘氨酸的还原分别需要 d-脯氨酸还原酶(PR)和甘氨酸还原酶(GR)酶复合物。培养基中添加脯氨酸会增加 PR 蛋白的水平,但会降低 GR 的水平。我们报告了 PrdR 的鉴定,它是一种在脯氨酸存在下激活 PR 编码基因转录的蛋白,并且负调控 GR 编码基因。结果表明,PrdR 是一种中央代谢调节剂,它控制优先利用脯氨酸和甘氨酸通过 Stickland 反应产生能量。

相似文献

1
Proline-dependent regulation of Clostridium difficile Stickland metabolism.
J Bacteriol. 2013 Feb;195(4):844-54. doi: 10.1128/JB.01492-12. Epub 2012 Dec 7.
2
Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.
J Bacteriol. 2006 Dec;188(24):8487-95. doi: 10.1128/JB.01370-06. Epub 2006 Oct 13.
3
Role of the global regulator Rex in control of NAD -regeneration in Clostridioides (Clostridium) difficile.
Mol Microbiol. 2019 Jun;111(6):1671-1688. doi: 10.1111/mmi.14245. Epub 2019 Apr 2.
4
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13.
7
Glycine fermentation by promotes virulence and spore formation, and is induced by host cathelicidin.
Infect Immun. 2023 Oct 17;91(10):e0031923. doi: 10.1128/iai.00319-23. Epub 2023 Sep 27.
9
Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations.
Anaerobe. 2022 Aug;76:102600. doi: 10.1016/j.anaerobe.2022.102600. Epub 2022 Jun 13.

引用本文的文献

2
Proline Stickland fermentation supports spore maturation.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0055125. doi: 10.1128/aem.00551-25. Epub 2025 Jun 4.
3
Host origin of microbiota drives functional recovery and clearance in mice.
mBio. 2025 Jun 2:e0110825. doi: 10.1128/mbio.01108-25.
4
The sigma factor σ () functions as a global regulator of antibiotic resistance, motility, metabolism, and virulence in .
Front Microbiol. 2025 Apr 29;16:1569627. doi: 10.3389/fmicb.2025.1569627. eCollection 2025.
5
The Pxp Complex Detoxifies 5-Oxoproline and Promotes the Growth of Clostridioides difficile.
Mol Microbiol. 2025 Jul;124(1):66-76. doi: 10.1111/mmi.15373. Epub 2025 May 8.
6
A designed synthetic microbiota provides insight to community function in Clostridioides difficile resistance.
Cell Host Microbe. 2025 Mar 12;33(3):373-387.e9. doi: 10.1016/j.chom.2025.02.007. Epub 2025 Mar 3.
7
Emerging ribotypes have divergent metabolic phenotypes.
mSystems. 2025 Mar 18;10(3):e0107524. doi: 10.1128/msystems.01075-24. Epub 2025 Feb 27.
8
colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an model.
mSphere. 2025 Feb 25;10(2):e0104924. doi: 10.1128/msphere.01049-24. Epub 2025 Jan 16.
9
Phocaeicola vulgatus shapes the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile.
Cell Host Microbe. 2025 Jan 8;33(1):42-58.e10. doi: 10.1016/j.chom.2024.12.001. Epub 2024 Dec 26.
10
Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile.
Anaerobe. 2025 Feb;91:102920. doi: 10.1016/j.anaerobe.2024.102920. Epub 2024 Nov 7.

本文引用的文献

1
4
Genetic manipulation of Clostridium difficile.
Curr Protoc Microbiol. 2011 Feb;Chapter 9:Unit 9A.2. doi: 10.1002/9780471729259.mc09a02s20.
5
The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile.
Microbiology (Reading). 2011 May;157(Pt 5):1457-1465. doi: 10.1099/mic.0.045997-0. Epub 2011 Feb 17.
6
CcpA-mediated repression of Clostridium difficile toxin gene expression.
Mol Microbiol. 2011 Feb;79(4):882-99. doi: 10.1111/j.1365-2958.2010.07495.x. Epub 2010 Dec 28.
8
Regulation of CodY activity through modulation of intracellular branched-chain amino acid pools.
J Bacteriol. 2010 Dec;192(24):6357-68. doi: 10.1128/JB.00937-10. Epub 2010 Oct 8.
9
The role of toxin A and toxin B in Clostridium difficile infection.
Nature. 2010 Oct 7;467(7316):711-3. doi: 10.1038/nature09397. Epub 2010 Sep 15.
10
Integration of metabolism and virulence by Clostridium difficile CodY.
J Bacteriol. 2010 Oct;192(20):5350-62. doi: 10.1128/JB.00341-10. Epub 2010 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验