Suppr超能文献

医院病原体艰难梭菌中脯氨酸减少的分析

Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.

作者信息

Jackson Sarah, Calos Mary, Myers Andrew, Self William T

机构信息

Department of Molecular Biology and Microbiology, Burnett College of Biomedical Science, University of Central Florida, Orlando, FL 32816-2364, USA.

出版信息

J Bacteriol. 2006 Dec;188(24):8487-95. doi: 10.1128/JB.01370-06. Epub 2006 Oct 13.

Abstract

Clostridium difficile, a proteolytic strict anaerobe, has emerged as a clinically significant nosocomial pathogen in recent years. Pathogenesis is due to the production of lethal toxins, A and B, members of the large clostridial cytotoxin family. Although it has been established that alterations in the amino acid content of the growth medium affect toxin production, the molecular mechanism for this observed effect is not yet known. Since there is a paucity of information on the amino acid fermentation pathways used by this pathogen, we investigated whether Stickland reactions might be at the heart of its bioenergetic pathways. Growth of C. difficile on Stickland pairs yielded large increases in cell density in a limiting basal medium, demonstrating that these reactions are tied to ATP production. Selenium supplementation was required for this increase in cell yield. Analysis of genome sequence data reveals genes encoding the protein components of two key selenoenzyme reductases, glycine reductase and d-proline reductase (PR). These selenoenzymes were expressed upon the addition of the corresponding Stickland acceptor (glycine, proline, or hydroxyproline). Purification of the selenoenzyme d-proline reductase revealed a mixed complex of PrdA and PrdB (SeCys-containing) proteins. PR utilized only d-proline but not l-hydroxyproline, even in the presence of an expressed and purified proline racemase. PR was found to be independent of divalent cations, and zinc was a potent inhibitor of PR. These results show that Stickland reactions are key to the growth of C. difficile and that the mechanism of PR may differ significantly from that of previously studied PR from nonpathogenic species.

摘要

艰难梭菌是一种蛋白水解严格厌氧菌,近年来已成为临床上重要的医院病原体。其发病机制是由于产生了致死毒素A和B,它们是大梭菌细胞毒素家族的成员。尽管已经确定生长培养基中氨基酸含量的改变会影响毒素产生,但这种观察到的效应的分子机制尚不清楚。由于关于这种病原体使用的氨基酸发酵途径的信息很少,我们研究了斯特克兰德反应是否可能是其生物能量途径的核心。艰难梭菌在斯特克兰德对底物上生长,在有限的基础培养基中细胞密度大幅增加,表明这些反应与ATP产生相关。增加细胞产量需要补充硒。对基因组序列数据的分析揭示了编码两种关键硒酶还原酶(甘氨酸还原酶和D-脯氨酸还原酶(PR))蛋白质成分的基因。添加相应的斯特克兰德受体(甘氨酸、脯氨酸或羟脯氨酸)后,这些硒酶得以表达。硒酶D-脯氨酸还原酶的纯化显示出PrdA和PrdB(含硒代半胱氨酸)蛋白的混合复合物。即使存在表达并纯化的脯氨酸消旋酶,PR也只利用D-脯氨酸而不利用L-羟脯氨酸。发现PR不依赖二价阳离子,锌是PR的有效抑制剂。这些结果表明,斯特克兰德反应是艰难梭菌生长的关键,并且PR的机制可能与先前研究的非致病物种的PR有显著差异。

相似文献

1
Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.
J Bacteriol. 2006 Dec;188(24):8487-95. doi: 10.1128/JB.01370-06. Epub 2006 Oct 13.
2
Proline-dependent regulation of Clostridium difficile Stickland metabolism.
J Bacteriol. 2013 Feb;195(4):844-54. doi: 10.1128/JB.01492-12. Epub 2012 Dec 7.
3
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13.
4
Role of the global regulator Rex in control of NAD -regeneration in Clostridioides (Clostridium) difficile.
Mol Microbiol. 2019 Jun;111(6):1671-1688. doi: 10.1111/mmi.14245. Epub 2019 Apr 2.
7
Selenium-dependent growth of Treponema denticola: evidence for a clostridial-type glycine reductase.
Arch Microbiol. 2001 Dec;177(1):113-6. doi: 10.1007/s002030100351. Epub 2001 Oct 3.
10
The Clostridium difficile proline racemase is not essential for early logarithmic growth and infection.
Can J Microbiol. 2014 Apr;60(4):251-4. doi: 10.1139/cjm-2013-0903. Epub 2014 Mar 6.

引用本文的文献

2
A metabolite dehydrogenase pathway represses sporulation of Clostridioides difficile.
Anaerobe. 2025 Jun;93:102971. doi: 10.1016/j.anaerobe.2025.102971. Epub 2025 May 9.
3
The Pxp Complex Detoxifies 5-Oxoproline and Promotes the Growth of Clostridioides difficile.
Mol Microbiol. 2025 Jul;124(1):66-76. doi: 10.1111/mmi.15373. Epub 2025 May 8.
5
Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone.
J Microbiol. 2024 May;62(5):367-379. doi: 10.1007/s12275-024-00141-0. Epub 2024 Jun 17.
6
Glycine fermentation by promotes virulence and spore formation, and is induced by host cathelicidin.
Infect Immun. 2023 Oct 17;91(10):e0031923. doi: 10.1128/iai.00319-23. Epub 2023 Sep 27.
8
Grad-seq identifies KhpB as a global RNA-binding protein in that regulates toxin production.
Microlife. 2021 Apr 22;2:uqab004. doi: 10.1093/femsml/uqab004. eCollection 2021.
9
The Novel DNA Binding Mechanism of Ridinilazole, a Precision Antibiotic.
Antimicrob Agents Chemother. 2023 May 17;67(5):e0156322. doi: 10.1128/aac.01563-22. Epub 2023 Apr 24.
10
minimal nutrient requirements for flagellar motility.
Front Microbiol. 2023 Mar 30;14:1172707. doi: 10.3389/fmicb.2023.1172707. eCollection 2023.

本文引用的文献

1
The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome.
Nat Genet. 2006 Jul;38(7):779-86. doi: 10.1038/ng1830. Epub 2006 Jun 25.
3
An epidemic, toxin gene-variant strain of Clostridium difficile.
N Engl J Med. 2005 Dec 8;353(23):2433-41. doi: 10.1056/NEJMoa051590. Epub 2005 Dec 1.
6
Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes.
Gastroenterology. 2005 Apr;128(4):1002-11. doi: 10.1053/j.gastro.2005.01.053.
7
C. difficile: by the numbers.
CMAJ. 2004 Nov 23;171(11):1331-2. doi: 10.1503/cmaj.1041694. Epub 2004 Nov 2.
8
C. difficile hits Sherbrooke, Que., hospital: 100 deaths.
CMAJ. 2004 Aug 31;171(5):436. doi: 10.1503/cmaj.1041250.
9
Clostridium difficile: a formidable foe.
CMAJ. 2004 Jul 6;171(1):47-8. doi: 10.1503/cmaj.1040836.
10
Clostridium difficile infection in hospitals: a brewing storm.
CMAJ. 2004 Jul 6;171(1):27-9. doi: 10.1503/cmaj.1040957.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验