Department of Pharmacology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quecec J1H 5N4, Canada.
J Biol Chem. 2013 Jan 25;288(4):2593-604. doi: 10.1074/jbc.M112.395939. Epub 2012 Dec 7.
G protein-coupled receptors contain selectively important residues that play central roles in the conformational changes that occur during receptor activation. Asparagine 111 (N111(3.35)) is such a residue within the angiotensin II type 1 (AT(1)) receptor. Substitution of N111(3.35) for glycine leads to a constitutively active receptor, whereas substitution for tryptophan leads to an inactivable receptor. Here, we analyzed the AT(1) receptor and two mutants (N111G and N111W) by molecular dynamics simulations, which revealed a novel molecular switch involving the strictly conserved residue D74(2.50). Indeed, D74(2.50) forms a stable hydrogen bond (H-bond) with the residue in position 111(3.35) in the wild-type and the inactivable receptor. However, in the constitutively active mutant N111G-AT(1) receptor, residue D74 is reoriented to form a new H-bond with another strictly conserved residue, N46(1.50). When expressed in HEK293 cells, the mutant N46G-AT(1) receptor was poorly activable, although it retained a high binding affinity. Interestingly, the mutant N46G/N111G-AT(1) receptor was also inactivable. Molecular dynamics simulations also revealed the presence of a cluster of hydrophobic residues from transmembrane domains 2, 3, and 7 that appears to stabilize the inactive form of the receptor. Whereas this hydrophobic cluster and the H-bond between D74(2.50) and W111(3.35) are more stable in the inactivable N111W-AT(1) receptor, the mutant N111W/F77A-AT(1) receptor, designed to weaken the hydrophobic core, showed significant agonist-induced signaling. These results support the potential for the formation of an H-bond between residues D74(2.50) and N46(1.50) in the activation of the AT(1) receptor.
G 蛋白偶联受体包含选择性重要残基,这些残基在受体激活过程中发生的构象变化中起着核心作用。天冬酰胺 111(N111(3.35))是血管紧张素 II 型 1(AT(1))受体中的这样一个残基。用甘氨酸取代 N111(3.35)会导致组成型激活的受体,而用色氨酸取代会导致不可激活的受体。在这里,我们通过分子动力学模拟分析了 AT(1)受体和两个突变体(N111G 和 N111W),结果揭示了一个涉及严格保守残基 D74(2.50)的新分子开关。事实上,D74(2.50)与野生型和不可激活受体中位置 111(3.35)的残基形成稳定的氢键(H 键)。然而,在组成型激活的突变体 N111G-AT(1)受体中,残基 D74 被重新定向,与另一个严格保守的残基 N46(1.50)形成新的 H 键。当在 HEK293 细胞中表达时,尽管突变体 N46G-AT(1)受体具有高结合亲和力,但仍难以激活。有趣的是,突变体 N46G/N111G-AT(1)受体也是不可激活的。分子动力学模拟还揭示了存在一个由跨膜域 2、3 和 7 中的疏水性残基组成的簇,该簇似乎稳定了受体的无活性形式。虽然在不可激活的 N111W-AT(1)受体中,这个疏水性簇和 D74(2.50)与 W111(3.35)之间的 H 键更稳定,但设计用于削弱疏水性核心的突变体 N111W/F77A-AT(1)受体显示出显著的激动剂诱导信号。这些结果支持在 AT(1)受体的激活过程中形成 D74(2.50)和 N46(1.50)之间 H 键的可能性。