Suppr超能文献

血管紧张素II 1型受体的第五个跨膜结构域参与配体结合口袋的形成,并在受体激活时发生逆时针旋转。

The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.

作者信息

Domazet Ivana, Martin Stéphane S, Holleran Brian J, Morin Marie-Eve, Lacasse Patrick, Lavigne Pierre, Escher Emanuel, Leduc Richard, Guillemette Gaétan

机构信息

Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.

出版信息

J Biol Chem. 2009 Nov 13;284(46):31953-61. doi: 10.1074/jbc.M109.051839. Epub 2009 Sep 22.

Abstract

The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.

摘要

八肽激素血管紧张素II通过激活1型血管紧张素II(AT(1))受体发挥多种心血管效应,该受体属于G蛋白偶联受体超家族。与其他G蛋白偶联受体一样,AT(1)受体具有七个跨膜结构域,为配体结合口袋的形成提供结构支持。使用取代半胱氨酸可及性方法研究了第五个跨膜结构域(TMD5)的作用。将Thr-190至Leu-217区域内的所有残基逐一突变为半胱氨酸,在COS-7细胞中表达后,用巯基特异性烷基化剂甲硫基磺酸乙酯铵(MTSEA)处理突变受体。MTSEA与内源性或引入的点突变半胱氨酸的水可及游离巯基选择性反应。如果在结合口袋中发现半胱氨酸,共价修饰将影响配体的结合动力学。MTSEA显著降低了L197C-AT(1)、N200C-AT(1)、I201C-AT(1)、G203C-AT(1)和F204C-AT(1)突变受体的结合亲和力,这表明这些残基位于AT(1)受体的水可及结合口袋内。有趣的是,在组成型活性N111G-AT(1)受体背景中工程化的TMD5报告半胱氨酸的这种获得性MTSEA敏感性模式发生了改变。实际上,突变体I201C-N111G-AT(1)对MTSEA变得更敏感,而突变体G203C-N111G-AT(1)失去了一些敏感性。我们的结果表明,从细胞外侧看,AT(1)受体的组成型激活导致TMD5明显逆时针旋转。

相似文献

3
Analysis of the third transmembrane domain of the human type 1 angiotensin II receptor by cysteine scanning mutagenesis.
J Biol Chem. 2004 Dec 3;279(49):51415-23. doi: 10.1074/jbc.M407965200. Epub 2004 Sep 27.
4
Analysis of transmembrane domains 1 and 4 of the human angiotensin II AT1 receptor by cysteine-scanning mutagenesis.
J Biol Chem. 2010 Jan 22;285(4):2284-93. doi: 10.1074/jbc.M109.077180. Epub 2009 Nov 23.
9
Identification of transmembrane domain 6 & 7 residues that contribute to the binding pocket of the urotensin II receptor.
Biochem Pharmacol. 2009 Apr 15;77(8):1374-82. doi: 10.1016/j.bcp.2009.01.013. Epub 2009 Jan 29.

引用本文的文献

2
Current topics in angiotensin II type 1 receptor research: Focus on inverse agonism, receptor dimerization and biased agonism.
Pharmacol Res. 2017 Sep;123:40-50. doi: 10.1016/j.phrs.2017.06.013. Epub 2017 Jun 23.
5
Constitutive activity in the angiotensin II type 1 receptor: discovery and applications.
Adv Pharmacol. 2014;70:155-74. doi: 10.1016/B978-0-12-417197-8.00006-7.
6
Critical hydrogen bond formation for activation of the angiotensin II type 1 receptor.
J Biol Chem. 2013 Jan 25;288(4):2593-604. doi: 10.1074/jbc.M112.395939. Epub 2012 Dec 7.
7
10
Simplified modeling approach suggests structural mechanisms for constitutive activation of the C5a receptor.
Proteins. 2011 Mar;79(3):787-802. doi: 10.1002/prot.22918. Epub 2010 Nov 30.

本文引用的文献

1
Activation induces structural changes in the liganded angiotensin II type 1 receptor.
J Biol Chem. 2009 Sep 25;284(39):26603-12. doi: 10.1074/jbc.M109.012922. Epub 2009 Jul 27.
3
A ligand channel through the G protein coupled receptor opsin.
PLoS One. 2009;4(2):e4382. doi: 10.1371/journal.pone.0004382. Epub 2009 Feb 5.
4
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation.
Nat Struct Mol Biol. 2009 Feb;16(2):168-75. doi: 10.1038/nsmb.1549. Epub 2009 Feb 1.
5
Location of the retinal chromophore in the activated state of rhodopsin*.
J Biol Chem. 2009 Apr 10;284(15):10190-201. doi: 10.1074/jbc.M805725200. Epub 2009 Jan 28.
6
Structure of a beta1-adrenergic G-protein-coupled receptor.
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.
7
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature. 2008 Jul 10;454(7201):183-7. doi: 10.1038/nature07063. Epub 2008 Jun 18.
8
Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
J Mol Biol. 2008 Jul 18;380(4):648-55. doi: 10.1016/j.jmb.2008.05.022. Epub 2008 May 17.
9
Crystal structure of squid rhodopsin.
Nature. 2008 May 15;453(7193):363-7. doi: 10.1038/nature06925.
10
High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.
Science. 2007 Nov 23;318(5854):1258-65. doi: 10.1126/science.1150577. Epub 2007 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验