Suppr超能文献

基于 MRI 表面形态测量的高维皮质厚度测量对阿尔茨海默病和路易体痴呆患者的多变量分类:一项 MRI 表面形态测量研究。

Multivariate classification of patients with Alzheimer's and dementia with Lewy bodies using high-dimensional cortical thickness measurements: an MRI surface-based morphometric study.

机构信息

Centre for Age-Related Medicine, Stavanger University Hospital, PO Box 8100, 4068 Stavanger, Norway.

出版信息

J Neurol. 2013 Apr;260(4):1104-15. doi: 10.1007/s00415-012-6768-z. Epub 2012 Dec 8.

Abstract

CONTEXT

Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are the most common neurodegenerative dementia types. It is important to differentiate between them because of the differences in prognosis and treatment approaches.

OBJECTIVE

Investigate if sparse partial least squares (SPLS) classification of cortical thickness measurements could differentiate between AD and DLB.

METHODS

Two independent cohorts without MR-protocol alignment in Norway and Slovenia with 97 AD and DLB subjects were enrolled. Cortical thickness measurements acquired with Freesurfer were used in subsequent SPLS classification runs. The cohorts were analyzed separately and afterwards combined. The models were trained with leave-one-out cross validation and test datasets where used when available. To study the impact of MR-protocol alignment, the classifiers were additionally tested on sets drawn exclusively from the independent cohorts.

RESULTS

The obtained sensitivity/specificity/AUC values were 94.4/88.89/0.978 and 88.2/94.1/0.969 in the Norwegian and Slovenian cohorts, respectively. Both cohorts showed AD-associated pattern of thinning in mid-anterior temporal, occipital and subgenual cingulate cortex, whereas the pattern supportive for DLB included thinning in dorsal cingulate, posterior temporal and lateral orbitofrontal regions. When combining the cohorts, sensitivity/specificity/AUC were 82.1/85.7/0.948 for the training and 77.8/75/0.731 for the testing datasets with the same pattern-of-difference. The models tested on datasets drawn exclusively from the independent cohorts did not produce adequate accuracy.

CONCLUSION

SPLS classification of cortical thickness is a good method for differentiating between AD and DLB, relatively stable even for mixed data, but not when tested on completely independent data drawn from different cohorts (without MR-protocol alignment).

摘要

背景

阿尔茨海默病(AD)和路易体痴呆(DLB)是最常见的神经退行性痴呆类型。区分它们很重要,因为它们的预后和治疗方法不同。

目的

研究皮质厚度测量的稀疏偏最小二乘(SPLS)分类是否可以区分 AD 和 DLB。

方法

在挪威和斯洛文尼亚,我们纳入了两个独立的队列,这些队列没有磁共振协议的一致性,共有 97 名 AD 和 DLB 患者。使用 Freesurfer 获得的皮质厚度测量值用于随后的 SPLS 分类运行。这些队列分别进行分析,然后合并。模型采用留一交叉验证进行训练,在有测试数据集的情况下使用测试数据集。为了研究磁共振协议一致性的影响,还在仅从独立队列中提取的数据集上测试了分类器。

结果

在挪威和斯洛文尼亚队列中,获得的敏感性/特异性/AUC 值分别为 94.4/88.89/0.978 和 88.2/94.1/0.969。两个队列在前颞中、后颞和扣带回下皮质均表现出与 AD 相关的变薄模式,而支持 DLB 的模式则包括扣带回背侧、后颞和外侧眶额皮质变薄。当合并队列时,训练集的敏感性/特异性/AUC 为 82.1/85.7/0.948,测试集为 77.8/75/0.731,具有相同的差异模式。在仅从独立队列中提取的数据集上测试的模型没有产生足够的准确性。

结论

皮质厚度的 SPLS 分类是区分 AD 和 DLB 的一种很好的方法,即使对于混合数据也相对稳定,但当在完全独立的数据上进行测试时,这些数据来自不同的队列(没有磁共振协议的一致性)则不行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验