Suppr超能文献

生物和非生物因素在充血性心力衰竭死亡率中的作用:PREDICE-SCORE:临床预测规则。

Role of biological and non biological factors in congestive heart failure mortality: PREDICE-SCORE: a clinical prediction rule.

机构信息

Research Institute, Clinical Research Unit Hospital 12 de Octobre, Madrid, Spain.

出版信息

Cardiol J. 2012;19(6):578-85. doi: 10.5603/cj.2012.0108.

Abstract

BACKGROUND

Congestive heart failure (HF) is a chronic, frequent and disabling condition but with a modifiable course and a large potential for improving. The aim of this project was to develop a clinical prediction model of biological and non biological factors in patients with first diagnosis of HF that facilitates the risk-stratification and decision-making process at the point of care.

METHODS AND RESULTS

Historical cohort analysis of 600 patients attended at three tertiary hospitals and diagnosed of a first episode of HF according Framingham criteria. There were followed 1 year. We analyzed sociodemographic, clinical and laboratory data with potential prognostic value. The modelling process concluded into a logistic regression multivariable analysis and a predictive rule: PREDICE SCORE. Age, dependency for daily basic activities, creatinine clearance, sodium levels at admission and systolic dysfunction diagnosis (HF with left ventricular ejection fraction 〈 40%) were the selected variables. The model showed a c-statistic of 0.763. PREDICE Score, has range of 22 points to stratifications of 1-year mortality.

CONCLUSIONS

The follow-up of 600 patients hospitalized by a first episode of congestive HF, allowed us to obtain a predictive 1 year mortality model from the combination of demographic data, routine biochemistry and easy handling social and functional variables at the point of care. The variables included were non-invasive, undemanding to collect, and widely available. It allows for risk stratification and therapeutical targeting and may help in the clinical decisions process in a sustainable way.

摘要

背景

充血性心力衰竭(HF)是一种慢性、频繁且致残的疾病,但具有可改变的病程和很大的改善潜力。本项目的目的是开发一种用于首次诊断为 HF 的患者的生物学和非生物学因素的临床预测模型,以促进在护理点进行风险分层和决策过程。

方法和结果

对在三家三级医院就诊并根据 Framingham 标准诊断为首次 HF 发作的 600 例患者进行了历史队列分析。对他们进行了为期 1 年的随访。我们分析了具有潜在预后价值的社会人口统计学、临床和实验室数据。建模过程得出了一个逻辑回归多变量分析和一个预测规则:PREDICE 评分。入选的变量包括年龄、日常生活活动依赖、肌酐清除率、入院时的钠水平和收缩功能障碍诊断(HF 左心室射血分数〈40%)。该模型的 C 统计量为 0.763。PREDICE 评分的范围为 22 分,可将 1 年死亡率分层。

结论

对 600 例因首次充血性 HF 住院的患者进行随访,使我们能够从人口统计学数据、常规生物化学以及在护理点易于处理的社会和功能变量的组合中获得预测 1 年死亡率的模型。所包括的变量是非侵入性的,易于收集,并且广泛可用。它可以进行风险分层和治疗靶向,并可能以可持续的方式帮助临床决策过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验