Suppr超能文献

基于奇异值分解和引力搜索算法推断基因调控网络。

Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm.

机构信息

College of Computer Science and Technology, Jilin University, Changchun, People's Republic of China.

出版信息

PLoS One. 2012;7(12):e51141. doi: 10.1371/journal.pone.0051141. Epub 2012 Dec 4.

Abstract

Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms.

摘要

基因调控网络(GRN)的重建是系统生物学中最感兴趣的问题,已成为一个具有挑战性的计算问题。然而,从基因表达谱中得出的每一种现有推断算法都有其自身的优点和缺点。特别是,以前的每种算法的有效性和效率都不够高。在这项工作中,我们提出了一种基于微分方程模型的从基因表达数据中推断 GRN 的新算法。在该算法中,包含了两种用于推断 GRN 的方法。在重建 GRN 之前,使用奇异值分解方法对基因表达数据进行分解,确定算法的解空间,并获得 GRN 的所有候选解。在这些生成的候选解族中,修改了引力场算法来推断 GRN,用于优化微分方程模型的准则,并搜索最佳的网络结构结果。该算法在网络数据库中的模拟无标度网络和真实基准基因调控网络上进行了验证。还使用贝叶斯方法和传统的微分方程模型来推断 GRN,并将结果与我们工作中的提出的算法进行比较。遗传算法和模拟退火也用于评估引力场算法。交叉验证结果证实了我们算法的有效性,该算法明显优于其他先前的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e82/3514269/96e414794f1e/pone.0051141.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验