Suppr超能文献

基于距离相关性从基因表达数据推断非线性基因调控网络。

Inferring nonlinear gene regulatory networks from gene expression data based on distance correlation.

作者信息

Guo Xiaobo, Zhang Ye, Hu Wenhao, Tan Haizhu, Wang Xueqin

机构信息

Department of Statistical Science, School of Mathematics & Computational Science, Sun Yat-Sen University, Guangzhou, China ; Southern China Research Center of Statistical Science, Sun Yat-Sen University, Guangzhou, China ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.

Department of Statistical Science, School of Mathematics & Computational Science, Sun Yat-Sen University, Guangzhou, China ; Southern China Research Center of Statistical Science, Sun Yat-Sen University, Guangzhou, China.

出版信息

PLoS One. 2014 Feb 14;9(2):e87446. doi: 10.1371/journal.pone.0087446. eCollection 2014.

Abstract

Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.

摘要

非线性依赖在基因调控网络(GRN)的调控机制中普遍存在。从真实数据中正确测量或检验非线性依赖对于重建GRN以及理解细胞系统内复杂的调控机制至关重要。最近开发的一种称为距离相关(DC)的测量方法已被证明在许多情况下对非线性依赖具有强大的功能和计算效率。在这项工作中,我们将DC纳入从基因表达数据推断GRN的过程中,无需任何潜在的分布假设。我们提出了三种基于DC的GRN推断算法:CLR-DC、MRNET-DC和REL-DC,然后通过分析两个模拟数据将它们与基于互信息(MI)的算法进行比较:来自DREAM挑战的基准GRN和由SynTReN网络生成器生成的GRN,以及大肠杆菌中通过实验确定的SOS DNA修复网络。根据接收器操作特征(ROC)曲线和精确召回(PR)曲线,我们提出的算法在GRN推断方面显著优于基于MI的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cce1/3925093/746b8ea959fe/pone.0087446.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验