Suppr超能文献

基于 [(11)C]胆碱数据集的肿瘤勾画分割算法的测试-重测比较评估。

Comparative assessment of segmentation algorithms for tumor delineation on a test-retest [(11)C]choline dataset.

机构信息

Comprehensive Cancer Imaging Center, Imperial College, London, UK.

出版信息

Med Phys. 2012 Dec;39(12):7571-9. doi: 10.1118/1.4761952.

Abstract

PURPOSE

Many methods have been proposed for tumor segmentation from positron emission tomography images. Because of the increasingly important role that [(11)C]choline is playing in oncology and because no study has compared segmentation methods on this tracer, the authors assessed several segmentation algorithms on a [(11)C]choline test-retest dataset.

METHODS

Fixed and adaptive threshold-based methods, fuzzy C-means (FCM), Canny's edge detection method, the watershed transform, and the fuzzy locally adaptive Bayesian algorithm (FLAB) were used. Test-retest [(11)C]choline scans of nine patients with breast cancer were considered and the percent test-retest variability %VAR(TEST-RETEST) of tumor volume (TV) was employed to assess the results. The same methods were then applied to two denoised datasets generated by applying either a Gaussian filter or the wavelet transform.

RESULTS

The (semi)automated methods FCM, FLAB, and Canny emerged as the best ones in terms of TV reproducibility. For these methods, the %root mean square error %RMSE of %VAR(TEST-RETEST), defined as %RMSE= variance+mean(2), was in the range 10%-21.2%, depending on the dataset and algorithm. Threshold-based methods gave TV estimates which were extremely variable, particularly on the unsmoothed data; their performance improved on the denoised datasets, whereas smoothing did not have a remarkable impact on the (semi)automated methods. TV variability was comparable to that of SUV(MAX) and SUV(MEAN) (range 14.7%-21.9% for %RMSE of %VAR(TEST-RETEST), after the exclusion of one outlier, 40%-43% when the outlier was included).

CONCLUSIONS

The TV variability obtained with the best methods was similar to the one reported for TV in previous [(18)F]FDG and [(18)F]FLT studies and to the one of SUV(MAX)∕SUV(MEAN) on the authors' [(11)C]choline dataset. The good reproducibility of [(11)C]choline TV warrants further studies to test whether TV could predict early response to treatment and survival, as for [(18)F]FDG, to complement∕substitute the use of SUV(MAX) and SUV(MEAN).

摘要

目的

已经提出了许多用于正电子发射断层扫描(PET)图像中肿瘤分割的方法。由于[(11)C]胆碱在肿瘤学中的作用越来越重要,而且尚无研究比较过该示踪剂的分割方法,因此作者在一组[(11)C]胆碱测试-复测数据集上评估了几种分割算法。

方法

使用固定和自适应阈值方法、模糊 C 均值(FCM)、Canny 边缘检测方法、分水岭变换和模糊局部自适应贝叶斯算法(FLAB)。考虑了九例乳腺癌患者的测试-复测 [(11)C]胆碱扫描,并用肿瘤体积(TV)的测试-复测变异性的百分比 %VAR(TEST-RETEST)来评估结果。然后将相同的方法应用于通过应用高斯滤波器或小波变换生成的两个去噪数据集。

结果

在 TV 可重复性方面,半自动方法 FCM、FLAB 和 Canny 是最好的方法。对于这些方法,%VAR(TEST-RETEST)的均方根误差 %RMSE 的定义为%RMSE=方差+均值(2),根据数据集和算法的不同,范围在 10%-21.2%之间。基于阈值的方法给出的 TV 估计值变化非常大,特别是在未平滑的数据上;在去噪数据集中,它们的性能有所提高,而平滑对半自动方法没有显著影响。TV 的变异性与 SUV(MAX)和 SUV(MEAN)的变异性相当(排除一个异常值后,%VAR(TEST-RETEST)的 %RMSE 的范围为 14.7%-21.9%,包含异常值时为 40%-43%)。

结论

最佳方法获得的 TV 变异性与之前关于 [(18)F]FDG 和 [(18)F]FLT 的 TV 报告相似,也与作者的 [(11)C]胆碱数据集上的 SUV(MAX)∕SUV(MEAN)相似。[(11)C]胆碱 TV 的良好可重复性值得进一步研究,以测试 TV 是否可以预测早期治疗反应和生存,就像 [(18)F]FDG 一样,以补充∕替代 SUV(MAX)和 SUV(MEAN)的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验