Suppr超能文献

放疗靶区的自动勾画:我们是否走在正确的道路上?

Automated delineation of radiotherapy volumes: are we going in the right direction?

机构信息

University of Manchester, Manchester, UK.

出版信息

Br J Radiol. 2013 Jan;86(1021):20110718. doi: 10.1259/bjr.20110718.

Abstract

Rapid and accurate delineation of target volumes and multiple organs at risk, within the enduring International Commission on Radiation Units and Measurement framework, is now hugely important in radiotherapy, owing to the rapid proliferation of intensity-modulated radiotherapy and the advent of four-dimensional image-guided adaption. Nevertheless, delineation is still generally clinically performed with little if any machine assistance, even though it is both time-consuming and prone to interobserver variation. Currently available segmentation tools include those based on image greyscale interrogation, statistical shape modelling and body atlas-based methods. However, all too often these are not able to match the accuracy of the expert clinician, which remains the universally acknowledged gold standard. In this article we suggest that current methods are fundamentally limited by their lack of ability to incorporate essential human clinical decision-making into the underlying models. Hybrid techniques that utilise prior knowledge, make sophisticated use of greyscale information and allow clinical expertise to be integrated are needed. This may require a change in focus from automated segmentation to machine-assisted delineation. Similarly, new metrics of image quality reflecting fitness for purpose would be extremely valuable. We conclude that methods need to be developed to take account of the clinician's expertise and honed visual processing capabilities as much as the underlying, clinically meaningful information content of the image data being interrogated. We illustrate our observations and suggestions through our own experiences with two software tools developed as part of research council-funded projects.

摘要

在国际辐射单位和测量委员会(ICRU)框架内,快速、准确地勾画靶区和多个危及器官,对于调强放疗和四维图像引导自适应放疗的迅速发展至关重要。然而,尽管勾画靶区既耗时又容易产生观察者间的差异,但目前临床上通常还是在很少或没有机器辅助的情况下进行,即使它的速度很快。目前可用的分割工具包括基于图像灰度值查询、统计形状建模和基于人体图谱的方法。然而,这些方法往往无法与专家临床医生的准确性相匹配,而专家临床医生仍然是公认的金标准。在本文中,我们认为目前的方法从根本上受到限制,因为它们无法将重要的人类临床决策纳入到基础模型中。需要使用混合技术,利用先验知识,巧妙地利用灰度信息,并允许整合临床专业知识。这可能需要从自动化分割转变为机器辅助勾画。同样,新的图像质量指标也将非常有价值,能够反映其适用性。我们的结论是,需要开发方法来考虑临床医生的专业知识和敏锐的视觉处理能力,以及所研究的图像数据的临床有意义的信息内容。我们通过两个软件工具的开发经验来说明我们的观察结果和建议,这两个工具是作为研究委员会资助项目的一部分而开发的。

相似文献

7
Atlas-based auto-segmentation of head and neck CT images.基于图谱的头颈部CT图像自动分割
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):434-41. doi: 10.1007/978-3-540-85990-1_52.

引用本文的文献

5
Autosegmentation of the rectum on megavoltage image guidance scans.兆伏级图像引导扫描下直肠的自动分割
Biomed Phys Eng Express. 2019 Feb;5(2):025006. doi: 10.1088/2057-1976/aaf1db. Epub 2019 Jan 10.

本文引用的文献

4
Random walks for image segmentation.用于图像分割的随机游走算法
IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83. doi: 10.1109/TPAMI.2006.233.
8
Approximate entropy as a measure of system complexity.近似熵作为系统复杂性的一种度量。
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301. doi: 10.1073/pnas.88.6.2297.
9
Spatiotemporal visual response to suprathreshold stimuli.
Vision Res. 1995 Jan;35(2):227-37. doi: 10.1016/0042-6989(94)00120-b.
10
Velocity-sensitive elements in human vision: initial psychophysical evidence.
Vision Res. 1968 Apr;8(4):445-50. doi: 10.1016/0042-6989(68)90112-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验