Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Comput Med Imaging Graph. 2012 Sep;36(6):492-500. doi: 10.1016/j.compmedimag.2012.05.001. Epub 2012 Jun 5.
We proposed a statistical modeling method for the quantitative evaluation of segmentation methods used in image guided radiotherapy. A statistical model parameterized on a Beta distribution was built upon the observations of the volume overlap between the segmented structure and the referenced structure. A statistical performance profile (SPP) was then estimated from the model using the generalized maximum likelihood approach. The SPP defines the probability density function characterizing the distribution of performance values and provides a graphical visualization of the segmentation performance. Different segmentation approaches may be influenced by image quality or observer variability. Our statistical model was able to quantify the impact of these variations and displays the underlying statistical performance of the segmentation algorithm. We demonstrated the efficacy of this statistical model using both simulated data and clinical evaluation studies in head and neck radiotherapy. Furthermore, the resulting SPP facilitates the measurement of the correlation between quantitative metrics and clinical experts' decision, and ultimately is able to guide the clinicians in selecting segmentation methods for radiotherapy.
我们提出了一种用于图像引导放射治疗中分割方法的定量评估的统计建模方法。基于分割结构和参考结构之间的体积重叠的观测结果,构建了一个参数化在 Beta 分布上的统计模型。然后使用广义最大似然方法从模型中估计统计性能分布(SPP)。SPP 定义了特征性能值分布的概率密度函数,并提供了分割性能的图形化可视化。不同的分割方法可能受到图像质量或观察者变异性的影响。我们的统计模型能够量化这些变化的影响,并显示分割算法的潜在统计性能。我们使用头部和颈部放射治疗中的模拟数据和临床评估研究证明了这种统计模型的有效性。此外,所得的 SPP 便于测量定量指标与临床专家决策之间的相关性,并最终能够指导临床医生选择放射治疗的分割方法。