Suppr超能文献

一种用于评估图像引导放射治疗中自动分割方法的统计建模方法。

A statistical modeling approach for evaluating auto-segmentation methods for image-guided radiotherapy.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Comput Med Imaging Graph. 2012 Sep;36(6):492-500. doi: 10.1016/j.compmedimag.2012.05.001. Epub 2012 Jun 5.

Abstract

We proposed a statistical modeling method for the quantitative evaluation of segmentation methods used in image guided radiotherapy. A statistical model parameterized on a Beta distribution was built upon the observations of the volume overlap between the segmented structure and the referenced structure. A statistical performance profile (SPP) was then estimated from the model using the generalized maximum likelihood approach. The SPP defines the probability density function characterizing the distribution of performance values and provides a graphical visualization of the segmentation performance. Different segmentation approaches may be influenced by image quality or observer variability. Our statistical model was able to quantify the impact of these variations and displays the underlying statistical performance of the segmentation algorithm. We demonstrated the efficacy of this statistical model using both simulated data and clinical evaluation studies in head and neck radiotherapy. Furthermore, the resulting SPP facilitates the measurement of the correlation between quantitative metrics and clinical experts' decision, and ultimately is able to guide the clinicians in selecting segmentation methods for radiotherapy.

摘要

我们提出了一种用于图像引导放射治疗中分割方法的定量评估的统计建模方法。基于分割结构和参考结构之间的体积重叠的观测结果,构建了一个参数化在 Beta 分布上的统计模型。然后使用广义最大似然方法从模型中估计统计性能分布(SPP)。SPP 定义了特征性能值分布的概率密度函数,并提供了分割性能的图形化可视化。不同的分割方法可能受到图像质量或观察者变异性的影响。我们的统计模型能够量化这些变化的影响,并显示分割算法的潜在统计性能。我们使用头部和颈部放射治疗中的模拟数据和临床评估研究证明了这种统计模型的有效性。此外,所得的 SPP 便于测量定量指标与临床专家决策之间的相关性,并最终能够指导临床医生选择放射治疗的分割方法。

相似文献

4
Using Frankenstein's creature paradigm to build a patient specific atlas.利用科学怪人怪物范式构建患者特异性图谱。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):993-1000. doi: 10.1007/978-3-642-04271-3_120.
5
Atlas-based auto-segmentation of head and neck CT images.基于图谱的头颈部CT图像自动分割
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):434-41. doi: 10.1007/978-3-540-85990-1_52.
6
Contour-driven regression for label inference in atlas-based segmentation.基于图谱分割中用于标签推断的轮廓驱动回归
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):211-8. doi: 10.1007/978-3-642-40760-4_27.

引用本文的文献

本文引用的文献

3
Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer.头颈部癌症自动图谱基于淋巴结分割的评估。
Int J Radiat Oncol Biol Phys. 2010 Jul 1;77(3):959-66. doi: 10.1016/j.ijrobp.2009.09.023. Epub 2010 Mar 16.
5
Automatic segmentation of whole breast using atlas approach and deformable image registration.使用图谱法和可变形图像配准进行全乳腺自动分割。
Int J Radiat Oncol Biol Phys. 2009 Apr 1;73(5):1493-500. doi: 10.1016/j.ijrobp.2008.07.001. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验