文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用 3D Slicer 进行垂体腺瘤容积测量。

Pituitary adenoma volumetry with 3D Slicer.

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2012;7(12):e51788. doi: 10.1371/journal.pone.0051788. Epub 2012 Dec 11.


DOI:10.1371/journal.pone.0051788
PMID:23240062
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3519899/
Abstract

In this study, we present pituitary adenoma volumetry using the free and open source medical image computing platform for biomedical research: (3D) Slicer. Volumetric changes in cerebral pathologies like pituitary adenomas are a critical factor in treatment decisions by physicians and in general the volume is acquired manually. Therefore, manual slice-by-slice segmentations in magnetic resonance imaging (MRI) data, which have been obtained at regular intervals, are performed. In contrast to this manual time consuming slice-by-slice segmentation process Slicer is an alternative which can be significantly faster and less user intensive. In this contribution, we compare pure manual segmentations of ten pituitary adenomas with semi-automatic segmentations under Slicer. Thus, physicians drew the boundaries completely manually on a slice-by-slice basis and performed a Slicer-enhanced segmentation using the competitive region-growing based module of Slicer named GrowCut. Results showed that the time and user effort required for GrowCut-based segmentations were on average about thirty percent less than the pure manual segmentations. Furthermore, we calculated the Dice Similarity Coefficient (DSC) between the manual and the Slicer-based segmentations to proof that the two are comparable yielding an average DSC of 81.97±3.39%.

摘要

在这项研究中,我们使用免费和开源的医学图像计算平台(3D Slicer)展示了垂体腺瘤的体积测量。脑病变(如垂体腺瘤)的体积变化是医生治疗决策的关键因素,通常需要手动获取体积。因此,需要对定期获取的磁共振成像(MRI)数据进行手动逐层分割。与这种耗时的手动逐层分割过程相比,Slicer 是一种替代方法,它可以显著更快且用户负担更小。在本研究中,我们将十例垂体腺瘤的纯手动分割与 Slicer 下的半自动分割进行了比较。因此,医生在逐层的基础上完全手动绘制边界,并使用 Slicer 中名为 GrowCut 的基于竞争区域增长的模块进行 Slicer 增强分割。结果表明,基于 GrowCut 的分割所需的时间和用户工作量平均比纯手动分割少约 30%。此外,我们计算了手动和基于 Slicer 的分割之间的 Dice 相似性系数(DSC),以证明两者是可比的,平均 DSC 为 81.97±3.39%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/d25b83581759/pone.0051788.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/f60669662aca/pone.0051788.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/51828bcc0a95/pone.0051788.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/463d3dae742a/pone.0051788.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/291919ac1a47/pone.0051788.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/d25b83581759/pone.0051788.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/f60669662aca/pone.0051788.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/51828bcc0a95/pone.0051788.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/463d3dae742a/pone.0051788.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/291919ac1a47/pone.0051788.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1be/3519899/d25b83581759/pone.0051788.g005.jpg

相似文献

[1]
Pituitary adenoma volumetry with 3D Slicer.

PLoS One. 2012-12-11

[2]
GBM volumetry using the 3D Slicer medical image computing platform.

Sci Rep. 2013

[3]
Volumetric CT-based segmentation of NSCLC using 3D-Slicer.

Sci Rep. 2013-12-18

[4]
Robust Radiomics feature quantification using semiautomatic volumetric segmentation.

PLoS One. 2014-7-15

[5]
A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

J Med Syst. 2011-3-8

[6]
Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation.

PLoS One. 2017-6-8

[7]
Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.

J Magn Reson Imaging. 2012-9-25

[8]
Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.

Med Phys. 2014-11

[9]
Fully Automated Enhanced Tumor Compartmentalization: Man vs. Machine Reloaded.

PLoS One. 2016-11-2

[10]
Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation.

Med Phys. 2011-10

引用本文的文献

[1]
Utilities of 3D technology for planning endoscopic endonasal approaches. Case series of anatomical-imaging review.

J Surg Case Rep. 2025-3-9

[2]
Volumetric measurement of cranial cavity and cerebral ventricular system with 3D Slicer software based on CT data.

BMC Med Imaging. 2025-2-26

[3]
Correlation of Edema/Tumor Index With Histopathological Outcomes According to the WHO Classification of Cranial Tumors.

Cureus. 2024-11-3

[4]
Radiomics of pituitary adenoma using computer vision: a review.

Med Biol Eng Comput. 2024-12

[5]
Sex estimation using maxillary sinus volume for Chinese subjects based on cone-beam computed tomography.

BMC Oral Health. 2024-2-19

[6]
deepPGSegNet: MRI-based pituitary gland segmentation using deep learning.

Front Endocrinol (Lausanne). 2024

[7]
Comparing MRI volume measurement techniques for pituitary macroadenoma: Investigating volume reduction and its relationship with biochemical control.

J Med Life. 2023-7

[8]
Automated volumetric assessment of pituitary adenoma.

Endocrine. 2024-1

[9]
Fully automated imaging protocol independent system for pituitary adenoma segmentation: a convolutional neural network-based model on sparsely annotated MRI.

Neurosurg Rev. 2023-5-10

[10]
Pituitary adenoma consistency affects postoperative hormone function: a retrospective study.

BMC Endocr Disord. 2023-4-26

本文引用的文献

[1]
Template-cut: a pattern-based segmentation paradigm.

Sci Rep. 2012-5-24

[2]
A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

J Med Syst. 2011-3-8

[3]
Prolactinomas, Cushing's disease and acromegaly: debating the role of medical therapy for secretory pituitary adenomas.

BMC Endocr Disord. 2010-5-17

[4]
Tumor volume of growth hormone-secreting pituitary adenomas during treatment with pegvisomant: a prospective multicenter study.

J Clin Endocrinol Metab. 2009-12-4

[5]
Surgical treatment of pituitary tumours.

Best Pract Res Clin Endocrinol Metab. 2009-10

[6]
Follow-up of pituitary tumor volume in patients with acromegaly treated with pegvisomant in clinical trials.

Eur J Endocrinol. 2008-11

[7]
Growth modelling of non-functioning pituitary adenomas in patients referred for surgery.

Eur J Endocrinol. 2008-3

[8]
Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1.

Clin Cancer Res. 2008-1-1

[9]
Pituitary adenomas treated with gamma knife radiosurgery: volumetric analysis of 100 cases with minimum 3 year follow-up.

Neurosurgery. 2007-8

[10]
[Sellar tumors].

Radiologe. 2007-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索