Suppr超能文献

基于自动受试者内配准的水脂 MRI 腹部脂肪分割。

Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.

机构信息

Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2564, USA.

出版信息

J Magn Reson Imaging. 2013 Feb;37(2):423-30. doi: 10.1002/jmri.23813. Epub 2012 Sep 25.

Abstract

PURPOSE

To develop an automatic registration-based segmentation algorithm for measuring abdominal adipose tissue depot volumes and organ fat fraction content from three-dimensional (3D) water-fat MRI data, and to evaluate its performance against manual segmentation.

MATERIALS AND METHODS

Data were obtained from 11 subjects at two time points with intermediate repositioning, and from four subjects before and after a meal with repositioning. Imaging was performed on a 3 Tesla MRI, using the IDEAL chemical-shift water-fat pulse sequence. Adipose tissue (subcutaneous--SAT, visceral--VAT) and organs (liver, pancreas) were manually segmented twice for each scan by a single trained observer. Automated segmentations of each subject's second scan were generated using a nonrigid volume registration algorithm for water-fat MRI images that used a b-spline basis for deformation and minimized image dissimilarity after the deformation. Manual and automated segmentations were compared using Dice coefficients and linear regression of SAT and VAT volumes, organ volumes, and hepatic and pancreatic fat fractions (HFF, PFF).

RESULTS

Manual segmentations from the 11 repositioned subjects exhibited strong repeatability and set performance benchmarks. The average Dice coefficients were 0.9747 (SAT), 0.9424 (VAT), 0.9404 (liver), and 0.8205 (pancreas); the linear correlation coefficients were 0.9994 (SAT volume), 0.9974 (VAT volume), 0.9885 (liver volume), 0.9782 (pancreas volume), 0.9996 (HFF), and 0.9660 (PFF). When comparing manual and automated segmentations, the average Dice coefficients were 0.9043 (SAT volume), 0.8235 (VAT), 0.8942 (liver), and 0.7168 (pancreas); the linear correlation coefficients were 0.9493 (SAT volume), 0.9982 (VAT volume), 0.9326 (liver volume), 0.8876 (pancreas volume), 0.9972 (HFF), and 0.8617 (PFF). In the four pre- and post-prandial subjects, the Dice coefficients were 0.9024 (SAT), 0.7781 (VAT), 0.8799 (liver), and 0.5179 (pancreas); the linear correlation coefficients were 0.9889, 0.9902 (SAT, and VAT volume), 0.9523 (liver volume), 0.8760 (pancreas volume), 0.9991 (HFF), and 0.6338 (PFF).

CONCLUSION

Automated intra-subject registration-based segmentation is potentially suitable for the quantification of abdominal and organ fat and achieves comparable quantitative endpoints with respect to manual segmentation.

摘要

目的

开发一种基于自动配准的分割算法,用于从三维(3D)水脂 MRI 数据中测量腹部脂肪组织容积和器官脂肪分数含量,并评估其与手动分割的性能。

材料和方法

数据来自 11 名受试者在两次中间重新定位时,以及 4 名受试者在重新定位前后餐前和餐后的数据。成像在 3.0T MRI 上进行,使用 IDEAL 化学位移水脂脉冲序列。脂肪组织(皮下-SAT,内脏-VAT)和器官(肝、胰腺)由一名经过培训的观察者分别进行两次手动分割。对每个受试者的第二扫描的自动分割是使用用于水脂 MRI 图像的非刚性体积配准算法生成的,该算法使用 b-样条作为变形的基础,并在变形后最小化图像差异。使用 Dice 系数和 SAT 和 VAT 体积、器官体积以及肝和胰腺脂肪分数(HFF、PFF)的线性回归比较手动和自动分割。

结果

11 名重新定位受试者的手动分割显示出很强的重复性和设定性能基准。平均 Dice 系数分别为 0.9747(SAT)、0.9424(VAT)、0.9404(肝)和 0.8205(胰腺);线性相关系数分别为 0.9994(SAT 体积)、0.9974(VAT 体积)、0.9885(肝体积)、0.9782(胰腺体积)、0.9996(HFF)和 0.9660(PFF)。当比较手动和自动分割时,平均 Dice 系数分别为 0.9043(SAT 体积)、0.8235(VAT)、0.8942(肝)和 0.7168(胰腺);线性相关系数分别为 0.9493(SAT 体积)、0.9982(VAT 体积)、0.9326(肝体积)、0.8876(胰腺体积)、0.9972(HFF)和 0.8617(PFF)。在四名餐前和餐后受试者中,Dice 系数分别为 0.9024(SAT)、0.7781(VAT)、0.8799(肝)和 0.5179(胰腺);线性相关系数分别为 0.9889、0.9902(SAT 和 VAT 体积)、0.9523(肝体积)、0.8760(胰腺体积)、0.9991(HFF)和 0.6338(PFF)。

结论

基于自动配准的自动分割方法可能适用于腹部和器官脂肪的定量分析,并可达到与手动分割相当的定量终点。

相似文献

1
Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.
J Magn Reson Imaging. 2013 Feb;37(2):423-30. doi: 10.1002/jmri.23813. Epub 2012 Sep 25.
2
Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.
Eur J Radiol. 2016 Sep;85(9):1613-21. doi: 10.1016/j.ejrad.2016.06.006. Epub 2016 Jun 8.
4
6
Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients.
J Magn Reson Imaging. 2013 May;37(5):1144-50. doi: 10.1002/jmri.23890. Epub 2012 Nov 2.
7
Comparison of visceral adipose tissue quantification on water suppressed and nonwater-suppressed MRI at 3.0 Tesla.
J Magn Reson Imaging. 2012 Jun;35(6):1445-52. doi: 10.1002/jmri.23582. Epub 2012 Jan 13.
8
Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men.
J Magn Reson Imaging. 2015 Apr;41(4):924-34. doi: 10.1002/jmri.24655. Epub 2014 May 7.
10
Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI.
Magn Reson Med. 2019 Apr;81(4):2736-2745. doi: 10.1002/mrm.27550. Epub 2018 Oct 12.

引用本文的文献

1
Automatic segmentation of fat metaplasia on sacroiliac joint MRI using deep learning.
Insights Imaging. 2024 Mar 26;15(1):93. doi: 10.1186/s13244-024-01659-y.
3
Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks.
Eur Radiol. 2021 Apr;31(4):1795-1804. doi: 10.1007/s00330-020-07147-3. Epub 2020 Sep 18.
5
MRI adipose tissue and muscle composition analysis-a review of automation techniques.
Br J Radiol. 2018 Sep;91(1089):20180252. doi: 10.1259/bjr.20180252. Epub 2018 Jul 24.
6
A concept for holistic whole body MRI data analysis, Imiomics.
PLoS One. 2017 Feb 27;12(2):e0169966. doi: 10.1371/journal.pone.0169966. eCollection 2017.
7
Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease.
World J Gastroenterol. 2016 Sep 14;22(34):7660-75. doi: 10.3748/wjg.v22.i34.7660.
9
Fat-water MRI of a diet-induced obesity mouse model at 15.2T.
J Med Imaging (Bellingham). 2016 Apr;3(2):026002. doi: 10.1117/1.JMI.3.2.026002. Epub 2016 May 24.
10
Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images.
MAGMA. 2016 Oct;29(5):723-31. doi: 10.1007/s10334-016-0547-2. Epub 2016 Mar 30.

本文引用的文献

1
Evaluation of adipose tissue volume quantification with IDEAL fat-water separation.
J Magn Reson Imaging. 2011 Aug;34(2):474-9. doi: 10.1002/jmri.22603.
2
Automatic abdominal fat assessment in obese mice using a segmental shape model.
J Magn Reson Imaging. 2011 Oct;34(4):866-73. doi: 10.1002/jmri.22690. Epub 2011 Jul 18.
3
Novel segmentation method for abdominal fat quantification by MRI.
J Magn Reson Imaging. 2011 Oct;34(4):852-60. doi: 10.1002/jmri.22673. Epub 2011 Jul 18.
5
Evaluation of volume-based and surface-based brain image registration methods.
Neuroimage. 2010 May 15;51(1):214-20. doi: 10.1016/j.neuroimage.2010.01.091. Epub 2010 Feb 1.
6
Topography mapping of whole body adipose tissue using A fully automated and standardized procedure.
J Magn Reson Imaging. 2010 Feb;31(2):430-9. doi: 10.1002/jmri.22036.
7
3D MRI heart segmentation of mouse embryos.
Comput Biol Med. 2010 Jan;40(1):64-74. doi: 10.1016/j.compbiomed.2009.11.001. Epub 2009 Nov 24.
8
Automatic segmentation of intra-abdominal and subcutaneous adipose tissue in 3D whole mouse MRI.
J Magn Reson Imaging. 2009 Sep;30(3):554-60. doi: 10.1002/jmri.21874.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验