Suppr超能文献

大肠杆菌转录激活因子和双重营养型调节因子 XylR 的结构:具有 LacI/GalR 配体结合结构域的 AraC DNA 结合家族成员。

Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain.

机构信息

Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Nucleic Acids Res. 2013 Feb 1;41(3):1998-2008. doi: 10.1093/nar/gks1207. Epub 2012 Dec 14.

Abstract

Escherichia coli can rapidly switch to the metabolism of l-arabinose and d-xylose in the absence of its preferred carbon source, glucose, in a process called carbon catabolite repression. Transcription of the genes required for l-arabinose and d-xylose consumption is regulated by the sugar-responsive transcription factors, AraC and XylR. E. coli represents a promising candidate for biofuel production through the metabolism of hemicellulose, which is composed of d-xylose and l-arabinose. Understanding the l-arabinose/d-xylose regulatory network is key for such biocatalyst development. Unlike AraC, which is a well-studied protein, little is known about XylR. To gain insight into XylR function, we performed biochemical and structural studies. XylR contains a C-terminal AraC-like domain. However, its N-terminal d-xylose-binding domain contains a periplasmic-binding protein (PBP) fold with structural homology to LacI/GalR transcription regulators. Like LacI/GalR proteins, the XylR PBP domain mediates dimerization. However, unlike LacI/GalR proteins, which dimerize in a parallel, side-to-side manner, XylR PBP dimers are antiparallel. Strikingly, d-xylose binding to this domain results in a helix to strand transition at the dimer interface that reorients both DNA-binding domains, allowing them to bind and loop distant operator sites. Thus, the combined data reveal the ligand-induced activation mechanism of a new family of DNA-binding proteins.

摘要

大肠杆菌可以在缺乏其首选碳源葡萄糖的情况下迅速切换到 L-阿拉伯糖和 D-木糖的代谢,这个过程称为碳分解代谢物阻遏。L-阿拉伯糖和 D-木糖消耗所需基因的转录受糖响应转录因子 AraC 和 XylR 调节。大肠杆菌通过代谢半纤维素(由 D-木糖和 L-阿拉伯糖组成)来生产生物燃料,是一种很有前途的候选生物。了解 L-阿拉伯糖/D-木糖调控网络是这种生物催化剂开发的关键。与研究较为充分的 AraC 不同,人们对 XylR 的了解甚少。为了深入了解 XylR 的功能,我们进行了生化和结构研究。XylR 包含一个 C 端 AraC 样结构域。然而,其 N 端 D-木糖结合结构域包含一个周质结合蛋白 (PBP) 折叠结构,与 LacI/GalR 转录调节剂具有结构同源性。与 LacI/GalR 蛋白一样,XylR PBP 结构域介导二聚化。然而,与平行、侧向二聚化的 LacI/GalR 蛋白不同,XylR PBP 二聚体是反平行的。引人注目的是,D-木糖与该结构域结合会导致二聚体界面上的螺旋到链转变,从而重新定向两个 DNA 结合结构域,使它们能够结合并环化远距离的操纵子位点。因此,综合数据揭示了一个新的 DNA 结合蛋白家族的配体诱导激活机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7679/3561964/93d387ba2d6f/gks1207f1p.jpg

相似文献

4
Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7349-7354. doi: 10.1073/pnas.1700345114. Epub 2017 Jun 27.
5
Arabinose Alters Both Local and Distal H-D Exchange Rates in the Escherichia coli AraC Transcriptional Regulator.
Biochemistry. 2019 Jul 2;58(26):2875-2882. doi: 10.1021/acs.biochem.9b00389. Epub 2019 Jun 19.
7
The role of rigidity in DNA looping-unlooping by AraC.
Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):427-31. doi: 10.1073/pnas.98.2.427.
9
Characterization of the oligomeric states of wild type and mutant AraC.
Biochemistry. 2000 Sep 26;39(38):11593-601. doi: 10.1021/bi001262g.
10
Regulation of D-xylose metabolism in Caulobacter crescentus by a LacI-type repressor.
J Bacteriol. 2007 Dec;189(24):8828-34. doi: 10.1128/JB.01342-07. Epub 2007 Oct 12.

引用本文的文献

2
XylR regulates genes at xyl cluster, involved in D-xylose catabolism in Herbaspirillum seropedicae Z69.
Arch Microbiol. 2024 Oct 1;206(10):422. doi: 10.1007/s00203-024-04143-9.
3
Investigating and Engineering an 1,2-Propanediol-Responsive Transcription Factor-Based Biosensor.
ACS Synth Biol. 2024 Jul 19;13(7):2177-2187. doi: 10.1021/acssynbio.4c00237. Epub 2024 Jul 5.
4
A conserved inhibitory interdomain interaction regulates DNA-binding activities of hybrid two-component systems in .
mBio. 2024 Jul 17;15(7):e0122024. doi: 10.1128/mbio.01220-24. Epub 2024 Jun 6.
5
Synthetic Gene Circuits for Regulation of Next-Generation Cell-Based Therapeutics.
Adv Sci (Weinh). 2024 Feb;11(8):e2309088. doi: 10.1002/advs.202309088. Epub 2023 Dec 21.
7
Determination of Mutational Timing of Colistin-Resistance Genes through Evolution.
Pharmaceutics. 2023 Jan 12;15(1):270. doi: 10.3390/pharmaceutics15010270.
8
Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway.
Int J Mol Sci. 2022 Dec 22;24(1):161. doi: 10.3390/ijms24010161.
9
Regulation of Transgene Expression by the Natural Sweetener Xylose.
Adv Sci (Weinh). 2022 Dec;9(34):e2203193. doi: 10.1002/advs.202203193. Epub 2022 Oct 31.

本文引用的文献

1
Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy.
Methods Mol Biol. 2013;931:295-312. doi: 10.1007/978-1-62703-056-4_14.
2
Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars.
Appl Environ Microbiol. 2012 Apr;78(7):2221-9. doi: 10.1128/AEM.06761-11. Epub 2012 Jan 27.
4
Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass.
Appl Microbiol Biotechnol. 2010 Nov;88(5):1077-85. doi: 10.1007/s00253-010-2839-1. Epub 2010 Sep 14.
5
AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action.
FEMS Microbiol Rev. 2010 Sep;34(5):779-96. doi: 10.1111/j.1574-6976.2010.00226.x. Epub 2010 Apr 8.
6
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
7
Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2860-5. doi: 10.1073/pnas.0915021107. Epub 2010 Feb 1.
8
Regulation of arabinose and xylose metabolism in Escherichia coli.
Appl Environ Microbiol. 2010 Mar;76(5):1524-32. doi: 10.1128/AEM.01970-09. Epub 2009 Dec 18.
9
Solution structure of the DNA binding domain of AraC protein.
Proteins. 2009 Oct;77(1):202-8. doi: 10.1002/prot.22431.
10
Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins.
Microbiology (Reading). 2008 Dec;154(Pt 12):3609-3623. doi: 10.1099/mic.0.2008/022772-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验