Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA.
Antioxid Redox Signal. 2013 May 10;18(14):1739-52. doi: 10.1089/ars.2012.4806. Epub 2013 Mar 14.
The mitochondrial dysfunction in our lamb model of congenital heart disease with increased pulmonary blood flow (PBF) (Shunt) is associated with disrupted carnitine metabolism. Our recent studies have also shown that asymmetric dimethylarginine (ADMA) levels are increased in Shunt lambs and ADMA increases the nitration of mitochondrial proteins in lamb pulmonary arterial endothelial cells (PAEC) in a nitric oxide synthase (NOS)-dependent manner. Thus, we determined whether there was a mechanistic link between endothelial nitric oxide synthase (eNOS), ADMA, and the disruption of carnitine homeostasis in PAEC.
Exposure of PAEC to ADMA induced the redistribution of eNOS to the mitochondria, resulting in an increase in carnitine acetyl transferase (CrAT) nitration and decreased CrAT activity. The resulting increase in acyl-carnitine levels resulted in mitochondrial dysfunction and the disruption of mitochondrial bioenergetics. Since the addition of L-arginine prevented these pathologic changes, we examined the effect of L-arginine supplementation on carnitine homeostasis, mitochondrial function, and nitric oxide (NO) signaling in Shunt lambs. We found that the treatment of Shunt lambs with L-arginine prevented the ADMA-mediated mitochondrial redistribution of eNOS, the nitration-mediated inhibition of CrAT, and maintained carnitine homeostasis. In turn, adenosine-5'-triphosphate levels and eNOS/heat shock protein 90 interactions were preserved, and this decreased NOS uncoupling and enhanced NO generation.
Our data link alterations in cellular L-arginine metabolism with the disruption of mitochondrial bioenergetics and implicate altered carnitine homeostasis as a key player in this process.
L-arginine supplementation may be a useful therapy to prevent the mitochondrial dysfunction involved in the pulmonary vascular alterations secondary to increased PBF.
在我们的肺动脉血流量增加(分流)的先天性心脏病羊模型中,线粒体功能障碍与肉碱代谢紊乱有关。我们最近的研究还表明,在分流羊中,不对称二甲基精氨酸(ADMA)水平升高,ADMA 以依赖一氧化氮合酶(NOS)的方式增加羊肺动脉内皮细胞(PAEC)中线粒体蛋白的硝化。因此,我们确定内皮型一氧化氮合酶(eNOS)、ADMA 和 PAEC 中肉碱稳态的破坏之间是否存在机制联系。
ADMA 暴露于 PAEC 诱导 eNOS 向线粒体重新分布,导致肉碱乙酰转移酶(CrAT)硝化增加和 CrAT 活性降低。酰基肉碱水平的增加导致线粒体功能障碍和线粒体生物能的破坏。由于添加 L-精氨酸可以预防这些病变,我们研究了 L-精氨酸补充对分流羊肉碱稳态、线粒体功能和一氧化氮(NO)信号的影响。我们发现,用 L-精氨酸治疗分流羊可防止 ADMA 介导的 eNOS 线粒体重新分布、硝化介导的 CrAT 抑制,并维持肉碱稳态。反过来,三磷酸腺苷水平和 eNOS/热休克蛋白 90 相互作用得以保留,从而减少 NOS 解偶联并增强 NO 的生成。
我们的数据将细胞内 L-精氨酸代谢的改变与线粒体生物能的破坏联系起来,并表明肉碱稳态的改变是该过程的关键因素。
L-精氨酸补充可能是一种有用的治疗方法,可以预防与肺动脉血流量增加引起的肺血管改变相关的线粒体功能障碍。