The University of Queensland Perinatal Research Centre and UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia.
Neuroimage. 2013 Mar;68:229-35. doi: 10.1016/j.neuroimage.2012.11.062. Epub 2012 Dec 13.
There is an increasing demand for source analysis of neonatal EEG, but currently there is inadequate knowledge about i) the spatial patterning of neonatal scalp EEG and hence ii) the number of electrodes needed to capture neonatal EEG in full spatial detail. This study addresses these issues by using a very high density (2.5mm interelectrode spacing) linear electrode array to assess the spatial power spectrum, by using a high density (64 electrodes) EEG cap to assess the spatial extent of the common oscillatory bouts in the neonatal EEG and by using a neonatal size spherical head model to assess the effects of source depth and skull conductivities on the spatial frequency spectrum. The linear array recordings show that the spatial power spectrum decays rapidly until about 0.5-0.8 cycles per centimeter. The dense array EEG recordings show that the amplitude of oscillatory events decays within 4-6 cm to the level of global background activity, and that the higher frequencies (12-20 Hz) show the most rapid spatial decline in amplitude. Simulation with spherical head model showed that realistic variation in skull conductivity and source depths can both introduce orders of magnitude difference in the spatial frequency of the scalp EEG. Calculation of spatial Nyquist frequencies from the spatial power spectra suggests that an interelectrode distance of about 6-10mm would suffice to capture the full spatial texture of the raw EEG signal at the neonatal scalp without spatial aliasing or under-sampling. The spatial decay of oscillatory events suggests that a full representation of their spatial characteristics requires an interelectrode distance of 10-20mm. The findings show that the conventional way of recording neonatal EEG with about 10 electrodes ignores most spatial EEG content, that increasing the electrode density is necessary to improve neonatal EEG source localization and information extraction, and that prospective source models will need to carefully consider the neonatally relevant ranges of tissue conductivities and source depths when source localizing cortical activity in neonates.
目前,人们对新生儿脑电图源分析的需求日益增加,但人们对新生儿头皮脑电图的空间模式知之甚少,因此也不知道需要多少个电极才能全面详细地记录新生儿脑电图。本研究通过使用非常高密度(电极间距 2.5 毫米)线性电极阵列来评估空间功率谱,通过使用高密度(64 个电极)脑电图帽来评估新生儿脑电图中常见振荡突发的空间范围,并通过使用新生儿大小的球形头部模型来评估源深度和颅骨电导率对空间频谱的影响,从而解决了这些问题。线性阵列记录显示,空间功率谱迅速衰减,直到约 0.5-0.8 个周期/厘米。密集阵列 EEG 记录显示,振荡事件的幅度在 4-6 厘米范围内衰减到全局背景活动水平,并且高频(12-20Hz)的幅度在空间上衰减最快。球形头部模型的模拟表明,颅骨电导率和源深度的实际变化都可以在头皮 EEG 的空间频率中引入数量级的差异。从空间功率谱计算空间奈奎斯特频率表明,在不产生空间混叠或欠采样的情况下,大约 6-10mm 的电极间距足以捕捉新生儿头皮原始 EEG 信号的全部空间纹理。振荡事件的空间衰减表明,要全面表示其空间特征,需要 10-20mm 的电极间距。研究结果表明,传统的用大约 10 个电极记录新生儿脑电图的方法忽略了大部分空间 EEG 内容,增加电极密度对于改善新生儿脑电图源定位和信息提取是必要的,而前瞻性源模型在对新生儿皮质活动进行源定位时,需要仔细考虑与组织电导率和源深度相关的新生儿相关范围。