Suppr超能文献

电控纳米粒子在内孔中的合成。

Electrically controlled nanoparticle synthesis inside nanopores.

机构信息

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Nano Lett. 2013 Feb 13;13(2):423-9. doi: 10.1021/nl303576q. Epub 2013 Jan 11.

Abstract

From their realization just over a decade ago, nanopores in silicon nitride membranes have allowed numerous transport-based single-molecule measurements. Here we report the use of these nanopores as subzeptoliter mixing volumes for the controlled synthesis of metal nanoparticles. Particle synthesis is controlled and monitored through an electric field applied across the nanopore membrane, which is positioned so as to separate electrolyte solutions of a metal precursor and a reducing agent. When the electric field drives reactive ions to the nanopore, a characteristic drop in the ion current is observed, indicating the formation of a nanoparticle inside the nanopore. While traditional chemical synthesis relies on temperature and timing to monitor particle growth, here we observe it in real time by monitoring electrical current. We describe the dynamics of gold particle formation in sub-10 nm diameter silicon nitride pores and the effects of salt concentration and additives on the particle's shape and size. The current versus time signal during particle formation in the nanopore is in excellent agreement with the Richards growth curve, indicating an access-limited growth mechanism.

摘要

从十多年前的发现开始,氮化硅膜中的纳米孔就已经允许进行许多基于传输的单分子测量。在这里,我们报告了将这些纳米孔用作亚zeptoliter 混合体积,以控制金属纳米粒子的合成。通过施加在纳米孔膜上的电场来控制和监测颗粒的合成,该电场的位置使得金属前体和还原剂的电解质溶液得以分离。当电场将反应离子驱动到纳米孔时,观察到离子电流的特征下降,表明在纳米孔内形成了纳米颗粒。虽然传统的化学合成依赖于温度和时间来监测颗粒的生长,但在这里,我们通过监测电流来实时观察它。我们描述了亚 10nm 直径氮化硅孔中金颗粒形成的动力学以及盐浓度和添加剂对颗粒形状和尺寸的影响。在纳米孔中形成颗粒期间的电流与时间信号与 Richards 生长曲线非常吻合,表明存在受限进入的生长机制。

相似文献

1
Electrically controlled nanoparticle synthesis inside nanopores.电控纳米粒子在内孔中的合成。
Nano Lett. 2013 Feb 13;13(2):423-9. doi: 10.1021/nl303576q. Epub 2013 Jan 11.

引用本文的文献

3
Gating with Charge Inversion to Control Ionic Transport in Nanopores.利用电荷反转进行门控以控制纳米孔中的离子传输。
ACS Appl Nano Mater. 2022 Dec 23;5(12):17682-17692. doi: 10.1021/acsanm.2c03573. Epub 2022 Dec 1.
5
Single-Entity Detection With TEM-Fabricated Nanopores.利用透射电子显微镜制造的纳米孔进行单实体检测。
Front Chem. 2021 May 7;9:664820. doi: 10.3389/fchem.2021.664820. eCollection 2021.
6
Chemically tailoring nanopores for single-molecule sensing and glycomics.化学修饰纳米孔用于单分子传感和糖组学研究。
Anal Bioanal Chem. 2020 Oct;412(25):6639-6654. doi: 10.1007/s00216-020-02717-2. Epub 2020 Jun 1.
7
Push-Button Method To Create Nanopores Using a Tesla-Coil Lighter.使用特斯拉线圈打火机创建纳米孔的按钮方法。
ACS Omega. 2019 Jan 4;4(1):226-230. doi: 10.1021/acsomega.8b02660. eCollection 2019 Jan 31.

本文引用的文献

2
Nanopores: A journey towards DNA sequencing.纳米孔:DNA 测序的征程。
Phys Life Rev. 2012 Jun;9(2):125-58. doi: 10.1016/j.plrev.2012.05.010. Epub 2012 May 18.
4
Nanopore sensors for nucleic acid analysis.纳米孔传感器用于核酸分析。
Nat Nanotechnol. 2011 Sep 18;6(10):615-24. doi: 10.1038/nnano.2011.129.
5
Mathematical modeling and simulation of nanopore blocking by precipitation.沉淀引起的纳米孔阻塞的数学建模与模拟。
J Phys Condens Matter. 2010 Nov 17;22(45):454101. doi: 10.1088/0953-8984/22/45/454101. Epub 2010 Oct 29.
10
Contactless electrofunctionalization of a single pore.单孔的无接触电功能化。
Small. 2009 Oct;5(20):2297-303. doi: 10.1002/smll.200900482.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验