Ben-Shachar Rotem, Chen Yifei, Luo Shishi, Hartman Catherine, Reed Michael, Nijhout H Frederik
Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.
Theor Biol Med Model. 2012 Dec 19;9:55. doi: 10.1186/1742-4682-9-55.
Acetaminophen (N-acetyl-para-aminophenol) is the most widely used over-the-counter or prescription painkiller in the world. Acetaminophen is metabolized in the liver where a toxic byproduct is produced that can be removed by conjugation with glutathione. Acetaminophen overdoses, either accidental or intentional, are the leading cause of acute liver failure in the United States, accounting for 56,000 emergency room visits per year. The standard treatment for overdose is N-acetyl-cysteine (NAC), which is given to stimulate the production of glutathione.
We have created a mathematical model for acetaminophen transport and metabolism including the following compartments: gut, plasma, liver, tissue, urine. In the liver compartment the metabolism of acetaminophen includes sulfation, glucoronidation, conjugation with glutathione, production of the toxic metabolite, and liver damage, taking biochemical parameters from the literature whenever possible. This model is then connected to a previously constructed model of glutathione metabolism.
We show that our model accurately reproduces published clinical and experimental data on the dose-dependent time course of acetaminophen in the plasma, the accumulation of acetaminophen and its metabolites in the urine, and the depletion of glutathione caused by conjugation with the toxic product. We use the model to study the extent of liver damage caused by overdoses or by chronic use of therapeutic doses, and the effects of polymorphisms in glucoronidation enzymes. We use the model to study the depletion of glutathione and the effect of the size and timing of N-acetyl-cysteine doses given as an antidote. Our model accurately predicts patient death or recovery depending on size of APAP overdose and time of treatment.
The mathematical model provides a new tool for studying the effects of various doses of acetaminophen on the liver metabolism of acetaminophen and glutathione. It can be used to study how the metabolism of acetaminophen depends on the expression level of liver enzymes. Finally, it can be used to predict patient metabolic and physiological responses to APAP doses and different NAC dosing strategies.
对乙酰氨基酚(N - 乙酰 - 对氨基酚)是世界上使用最广泛的非处方或处方止痛药。对乙酰氨基酚在肝脏中代谢,会产生一种有毒副产物,该副产物可通过与谷胱甘肽结合而被清除。在美国,对乙酰氨基酚过量服用,无论是意外还是故意的,都是急性肝衰竭的主要原因,每年导致56000人次急诊就诊。过量服用的标准治疗方法是使用N - 乙酰半胱氨酸(NAC),它能刺激谷胱甘肽的产生。
我们创建了一个对乙酰氨基酚转运和代谢的数学模型,包括以下区室:肠道、血浆、肝脏、组织、尿液。在肝脏区室中,对乙酰氨基酚的代谢包括硫酸化、葡萄糖醛酸化、与谷胱甘肽结合、有毒代谢产物的产生以及肝损伤,尽可能采用文献中的生化参数。然后将该模型与先前构建的谷胱甘肽代谢模型相连接。
我们表明,我们的模型准确地再现了已发表的关于血浆中对乙酰氨基酚剂量依赖性时间进程、尿液中对乙酰氨基酚及其代谢产物的积累以及与有毒产物结合导致的谷胱甘肽消耗的临床和实验数据。我们使用该模型研究过量服用或长期使用治疗剂量导致的肝损伤程度,以及葡萄糖醛酸化酶多态性的影响。我们使用该模型研究谷胱甘肽的消耗以及作为解毒剂的N - 乙酰半胱氨酸剂量大小和给药时间的影响。我们的模型根据对乙酰氨基酚过量的大小和治疗时间准确预测患者的死亡或康复情况。
该数学模型为研究不同剂量对乙酰氨基酚对其自身肝脏代谢和谷胱甘肽的影响提供了一种新工具。它可用于研究对乙酰氨基酚的代谢如何依赖于肝脏酶的表达水平。最后,它可用于预测患者对乙酰氨基酚剂量和不同NAC给药策略的代谢和生理反应。