Suppr超能文献

从海洋烃类冷泉中富集的硫酸盐还原菌对丙烷和丁烷的厌氧降解。

Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

机构信息

Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, Germany.

出版信息

ISME J. 2013 May;7(5):885-95. doi: 10.1038/ismej.2012.159. Epub 2012 Dec 20.

Abstract

The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

摘要

短链非甲烷烃丙烷和丁烷可显著影响受石油或天然气渗漏影响的海洋环境中的碳和硫循环。在本研究中,我们从墨西哥湾和 Hydrate Ridge 的海洋油气冷渗出物中富集并鉴定了新型的丙烷和丁烷降解硫酸盐还原菌。获得的富集培养物能够同时降解丙烷和丁烷,但不能降解其他气态烷烃。它们是低温适应的,在 16 到 20°C 之间表现出最高的硫酸盐还原速率。16S rRNA 基因文库分析,随后用与序列特异性寡核苷酸探针进行的全细胞杂交表明,每个富集培养物都由一个独特的与脱硫弧菌-脱硫球菌属内的 δ 变形菌门的聚类相关的生物型主导。这些生物型形成了丙烷和丁烷降解菌的独特系统发育聚类,包括与烃类渗漏有关的环境中的序列。用(13)C 标记的底物进行孵育,用序列特异性探针进行杂交和纳米 SIMS 分析表明,优势生物型的细胞首先在(13)C 中富集,证明它们直接参与了烃类降解。此外,利用纳米 SIMS 数据,计算了每个富集培养物中优势细胞的碳同化速率。

相似文献

3
Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
Nature. 2007 Oct 18;449(7164):898-901. doi: 10.1038/nature06200. Epub 2007 Sep 19.
4
The anaerobic degradation of gaseous, nonmethane alkanes - From in situ processes to microorganisms.
Comput Struct Biotechnol J. 2015 Mar 19;13:222-8. doi: 10.1016/j.csbj.2015.03.002. eCollection 2015.
5
Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.
Appl Environ Microbiol. 2010 Oct;76(19):6412-22. doi: 10.1128/AEM.00271-10. Epub 2010 Jul 30.
6
Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.
FEMS Microbiol Ecol. 2010 Jun;72(3):485-95. doi: 10.1111/j.1574-6941.2010.00866.x. Epub 2010 Mar 19.
7
Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.
Front Microbiol. 2013 Dec 12;4:386. doi: 10.3389/fmicb.2013.00386. eCollection 2013.
8
On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
Environ Microbiol. 2008 May;10(5):1108-17. doi: 10.1111/j.1462-2920.2007.01526.x. Epub 2008 Jan 23.
9
Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.
Environ Microbiol. 2012 Oct;14(10):2689-710. doi: 10.1111/j.1462-2920.2012.02832.x. Epub 2012 Aug 8.
10
Thermophilic anaerobic oxidation of methane by marine microbial consortia.
ISME J. 2011 Dec;5(12):1946-56. doi: 10.1038/ismej.2011.77. Epub 2011 Jun 23.

引用本文的文献

2
Maintaining ocean ecosystem health with hydrocarbonoclastic microbes.
ISME Commun. 2024 Nov 4;5(1):ycae135. doi: 10.1093/ismeco/ycae135. eCollection 2025 Jan.
3
Microbial oxidation of short-chain gaseous alkanes.
Nat Microbiol. 2025 May;10(5):1042-1054. doi: 10.1038/s41564-025-01982-0. Epub 2025 Apr 15.
4
Back flux during anaerobic oxidation of butane support archaea-mediated alkanogenesis.
Nat Commun. 2024 Nov 7;15(1):9628. doi: 10.1038/s41467-024-53932-9.
5
6
Nitrate-driven anaerobic oxidation of ethane and butane by bacteria.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrad011.

本文引用的文献

1
Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.
Environ Microbiol. 2012 Oct;14(10):2689-710. doi: 10.1111/j.1462-2920.2012.02832.x. Epub 2012 Aug 8.
2
Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology.
Environ Microbiol. 2012 Apr;14(4):1009-23. doi: 10.1111/j.1462-2920.2011.02681.x. Epub 2012 Jan 6.
3
Propane respiration jump-starts microbial response to a deep oil spill.
Science. 2010 Oct 8;330(6001):208-11. doi: 10.1126/science.1196830. Epub 2010 Sep 16.
4
Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.
Appl Environ Microbiol. 2010 Oct;76(19):6412-22. doi: 10.1128/AEM.00271-10. Epub 2010 Jul 30.
5
Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.
FEMS Microbiol Ecol. 2010 Jun;72(3):485-95. doi: 10.1111/j.1574-6941.2010.00866.x. Epub 2010 Mar 19.
6
A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.
Science. 2009 Sep 18;325(5947):1541-4. doi: 10.1126/science.1174012.
7
A single-cell view on the ecophysiology of anaerobic phototrophic bacteria.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17861-6. doi: 10.1073/pnas.0809329105. Epub 2008 Nov 12.
8
A rapid bootstrap algorithm for the RAxML Web servers.
Syst Biol. 2008 Oct;57(5):758-71. doi: 10.1080/10635150802429642.
9
Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.
Environ Microbiol. 2009 Jan;11(1):209-19. doi: 10.1111/j.1462-2920.2008.01756.x. Epub 2008 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验