Suppr超能文献

拟南芥 B3 结构域蛋白 VERNALIZATION1(VRN1)参与了对发育至关重要的过程,结构和突变研究揭示了其 DNA 结合表面。

The Arabidopsis B3 domain protein VERNALIZATION1 (VRN1) is involved in processes essential for development, with structural and mutational studies revealing its DNA-binding surface.

机构信息

Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.

出版信息

J Biol Chem. 2013 Feb 1;288(5):3198-207. doi: 10.1074/jbc.M112.438572. Epub 2012 Dec 19.

Abstract

The B3 DNA-binding domain is a plant-specific domain found throughout the plant kingdom from the alga Chlamydomonas to grasses and flowering plants. Over 100 B3 domain-containing proteins are found in the model plant Arabidopsis thaliana, and one of these is critical for accelerating flowering in response to prolonged cold treatment, an epigenetic process called vernalization. Despite the specific phenotype of genetic vrn1 mutants, the VERNALIZATION1 (VRN1) protein localizes throughout the nucleus and shows sequence-nonspecific binding in vitro. In this work, we used a dominant repressor tag that overcomes genetic redundancy to show that VRN1 is involved in processes beyond vernalization that are essential for Arabidopsis development. To understand its sequence-nonspecific binding, we crystallized VRN1(208-341) and solved its crystal structure to 1.6 Å resolution using selenium/single-wavelength anomalous diffraction methods. The crystallized construct comprises the second VRN1 B3 domain and a preceding region conserved among VRN1 orthologs but absent in other B3 domains. We established the DNA-binding face using NMR and then mutated positively charged residues on this surface with a series of 16 Ala and Glu substitutions, ensuring that the protein fold was not disturbed using heteronuclear single quantum correlation NMR spectra. The triple mutant R249E/R289E/R296E was almost completely incapable of DNA binding in vitro. Thus, we have revealed that although VRN1 is sequence-nonspecific in DNA binding, it has a defined DNA-binding surface.

摘要

B3 DNA 结合结构域是一种在从藻类衣藻到禾本科植物和开花植物的整个植物界中都存在的植物特异性结构域。在模式植物拟南芥中发现了超过 100 种含有 B3 结构域的蛋白质,其中一种对于响应长时间的冷处理(一种称为春化的表观遗传过程)加速开花至关重要。尽管遗传 vrn1 突变体具有特定的表型,但 VERNALIZATION1 (VRN1) 蛋白在整个核内定位,并在体外表现出序列非特异性结合。在这项工作中,我们使用了一种克服遗传冗余的显性抑制剂标签,证明 VRN1 参与了除春化之外的对于拟南芥发育至关重要的过程。为了理解其序列非特异性结合,我们使用硒/单波长异常衍射方法,将 VRN1(208-341) 结晶,并将其晶体结构解析至 1.6 Å 的分辨率。结晶的构建体包含第二个 VRN1 B3 结构域和 VRN1 同源物中保守的但在其他 B3 结构域中缺失的前区。我们使用 NMR 确定了 DNA 结合面,然后用一系列 16 个 Ala 和 Glu 取代突变该表面上的带正电荷残基,确保使用异核单量子相关 NMR 谱不会干扰蛋白质折叠。三重突变体 R249E/R289E/R296E 在体外几乎完全不能结合 DNA。因此,我们揭示了尽管 VRN1 在 DNA 结合中是序列非特异性的,但它具有定义明确的 DNA 结合面。

相似文献

2
NMR assignment and secondary structure of the C-terminal DNA binding domain of Arabidopsis thaliana VERNALIZATION1.
Biomol NMR Assign. 2012 Apr;6(1):5-8. doi: 10.1007/s12104-011-9313-6. Epub 2011 May 8.
3
Expression, purification and preliminary X-ray diffraction studies of VERNALIZATION1(208-341) from Arabidopsis thaliana.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Mar 1;65(Pt 3):291-4. doi: 10.1107/S1744309109004217. Epub 2009 Feb 26.
4
Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control.
Science. 2002 Jul 12;297(5579):243-6. doi: 10.1126/science.1072147.
5
Charge Segregation in the Intrinsically Disordered Region Governs VRN1 and DNA Liquid-like Phase Separation Robustness.
J Mol Biol. 2021 Nov 5;433(22):167269. doi: 10.1016/j.jmb.2021.167269. Epub 2021 Sep 24.
6
Structural insight into the role of VAL1 B3 domain for targeting to FLC locus in Arabidopsis thaliana.
Biochem Biophys Res Commun. 2018 Jun 22;501(2):415-422. doi: 10.1016/j.bbrc.2018.05.002. Epub 2018 May 10.
7
Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1.
Nucleic Acids Res. 2018 May 4;46(8):4316-4324. doi: 10.1093/nar/gky256.
8
Establishment of a vernalization requirement in requires .
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6623-6628. doi: 10.1073/pnas.1700536114. Epub 2017 Jun 5.
10
DNA recognition by Arabidopsis transcription factors ABI3 and NGA1.
FEBS J. 2018 Nov;285(21):4041-4059. doi: 10.1111/febs.14649. Epub 2018 Sep 21.

引用本文的文献

1
Cold-induced nucleosome dynamics linked to silencing of Arabidopsis FLC.
Nat Commun. 2025 Jul 1;16(1):5550. doi: 10.1038/s41467-025-60735-z.
2
Genome-Wide Association Studies of Embryogenic Callus Induction Rate in Peanut ( L.).
Genes (Basel). 2024 Jan 26;15(2):160. doi: 10.3390/genes15020160.
3
Seasonal variation of two floral patterns in Clematis 'Vyvyan Pennell' and its underlying mechanism.
BMC Plant Biol. 2024 Jan 2;24(1):22. doi: 10.1186/s12870-023-04696-9.
4
Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility.
Mol Plant. 2023 Sep 4;16(9):1427-1444. doi: 10.1016/j.molp.2023.08.013. Epub 2023 Aug 30.
5
Identification of the Genes Encoding B3 Domain-Containing Proteins Related to Vernalization of .
Genes (Basel). 2022 Nov 25;13(12):2217. doi: 10.3390/genes13122217.
6
gene of unknown function, Gohir.A02G044702.1, encodes a potential B3 Transcription Factor of the REM subfamily.
MicroPubl Biol. 2022 Aug 6;2022. doi: 10.17912/micropub.biology.000574. eCollection 2022.
7
Transcriptome and proteome analysis of ultrasound pretreated peanut sprouts.
Food Chem (Oxf). 2022 Mar 14;4:100102. doi: 10.1016/j.fochms.2022.100102. eCollection 2022 Jul 30.
8
Transcriptomic Analysis of Early Flowering Signals in 'Royal' Flax.
Plants (Basel). 2022 Mar 24;11(7):860. doi: 10.3390/plants11070860.
9
TEM1 combinatorially binds to and recruits a Polycomb factor to repress the floral transition in .
Proc Natl Acad Sci U S A. 2021 Aug 31;118(35). doi: 10.1073/pnas.2103895118.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
DNA-binding domains of plant-specific transcription factors: structure, function, and evolution.
Trends Plant Sci. 2013 May;18(5):267-76. doi: 10.1016/j.tplants.2012.09.001. Epub 2012 Oct 3.
3
NMR assignment and secondary structure of the C-terminal DNA binding domain of Arabidopsis thaliana VERNALIZATION1.
Biomol NMR Assign. 2012 Apr;6(1):5-8. doi: 10.1007/s12104-011-9313-6. Epub 2011 May 8.
4
Dali server: conservation mapping in 3D.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9. doi: 10.1093/nar/gkq366. Epub 2010 May 10.
5
Experimental phasing with SHELXC/D/E: combining chain tracing with density modification.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):479-85. doi: 10.1107/S0907444909038360. Epub 2010 Mar 24.
6
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.
7
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
9
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验