Suppr超能文献

基于深度卷积神经网络的口腔黏膜组织病理图像口腔鳞状细胞癌自动检测

Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network.

机构信息

Department of Computer Application, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, India.

Department of Computer Science and Engineering, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, India.

出版信息

Int J Environ Res Public Health. 2023 Jan 24;20(3):2131. doi: 10.3390/ijerph20032131.

Abstract

Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and dominant one is oral squamous cell carcinoma (OSCC). The major reason for oral cancer is tobacco consumption, excessive alcohol consumption, unhygienic mouth condition, betel quid eating, viral infection (namely human papillomavirus), etc. The early detection of oral cancer type OSCC, in its preliminary stage, gives more chances for better treatment and proper therapy. In this paper, author proposes a convolutional neural network model, for the automatic and early detection of OSCC, and for experimental purposes, histopathological oral cancer images are considered. The proposed model is compared and analyzed with state-of-the-art deep learning models like VGG16, VGG19, Alexnet, ResNet50, ResNet101, Mobile Net and Inception Net. The proposed model achieved a cross-validation accuracy of 97.82%, which indicates the suitability of the proposed approach for the automatic classification of oral cancer data.

摘要

在全球范围内,口腔癌是第六种最常见的癌症类型。印度位居第二,拥有最多的口腔癌患者。在口腔癌患者中,印度的患者数量几乎占总数的三分之一。在几种类型的口腔癌中,最常见和占主导地位的是口腔鳞状细胞癌(OSCC)。口腔癌的主要原因是吸烟、酗酒、口腔卫生条件差、嚼槟榔、病毒感染(即人乳头瘤病毒)等。早期发现口腔癌 OSCC 的早期阶段,为更好的治疗和适当的治疗提供了更多的机会。在本文中,作者提出了一种卷积神经网络模型,用于自动和早期检测 OSCC,并考虑了用于实验目的的组织病理学口腔癌图像。将所提出的模型与 VGG16、VGG19、Alexnet、ResNet50、ResNet101、Mobile Net 和 Inception Net 等最先进的深度学习模型进行了比较和分析。所提出的模型在交叉验证中的准确率达到了 97.82%,这表明该方法适用于口腔癌数据的自动分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a2e/9915186/57e74fe8ce3f/ijerph-20-02131-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验