Suppr超能文献

4-羟基丁酰辅酶 A 合成酶在嗜热嗜酸古菌 CO2 固定循环中的作用。

Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA.

出版信息

J Biol Chem. 2013 Feb 8;288(6):4012-22. doi: 10.1074/jbc.M112.413195. Epub 2012 Dec 20.

Abstract

Metallosphaera sedula is an extremely thermoacidophilic archaeon that grows heterotrophically on peptides and chemolithoautotrophically on hydrogen, sulfur, or reduced metals as energy sources. During autotrophic growth, carbon dioxide is incorporated into cellular carbon via the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB). To date, all of the steps in the pathway have been connected to enzymes encoded in specific genes, except for the one responsible for ligation of coenzyme A (CoA) to 4HB. Although several candidates for this step have been identified through bioinformatic analysis of the M. sedula genome, none have been shown to catalyze this biotransformation. In this report, transcriptomic analysis of cells grown under strict H(2)-CO(2) autotrophy was consistent with the involvement of Msed_0406 and Msed_0394. Recombinant versions of these enzymes catalyzed the ligation of CoA to 4HB, with similar affinities for 4HB (K(m) values of 1.9 and 1.5 mm for Msed_0406 and Msed_0394, respectively) but with different rates (1.69 and 0.22 μmol × min(-1) × mg(-1) for Msed_0406 and Msed_0394, respectively). Neither Msed_0406 nor Msed_0394 have close homologs in other Sulfolobales, although low sequence similarity is not unusual for acyl-adenylate-forming enzymes. The capacity of these two enzymes to use 4HB as a substrate may have arisen from simple modifications to acyl-adenylate-forming enzymes. For example, a single amino acid substitution (W424G) in the active site of the acetate/propionate synthetase (Msed_1353), an enzyme that is highly conserved among the Sulfolobales, changed its substrate specificity to include 4HB. The identification of the 4-HB CoA synthetase now completes the set of enzymes comprising the 3HP/4HB cycle.

摘要

极端嗜热嗜酸古菌 Sedulibacter sedula 可以异养生长在肽上,也可以自养生长在氢气、硫或还原金属上作为能源。在自养生长过程中,二氧化碳通过 3-羟基丙酸/4-羟基丁酸循环(3HP/4HB)被整合到细胞碳中。迄今为止,该途径的所有步骤都与特定基因编码的酶有关,除了负责将辅酶 A(CoA)与 4HB 连接的步骤。尽管通过对 Sedulibacter sedula 基因组的生物信息学分析已经鉴定出了几个此步骤的候选酶,但没有一种酶被证明能催化这种生物转化。在本报告中,严格 H(2)-CO(2)自养生长细胞的转录组分析表明,Msed_0406 和 Msed_0394 可能参与其中。这两种酶的重组版本催化 CoA 与 4HB 的连接,对 4HB 的亲和力相似(Msed_0406 和 Msed_0394 的 K(m) 值分别为 1.9 和 1.5mm),但反应速度不同(Msed_0406 和 Msed_0394 的分别为 1.69 和 0.22μmol×min(-1)×mg(-1))。Msed_0406 和 Msed_0394 在其他 Sulfolobales 中都没有密切的同源物,尽管酰基辅酶 A 形成酶的低序列相似性并不罕见。这两种酶能够将 4HB 用作底物,可能是由于酰基辅酶 A 形成酶的简单修饰。例如,在 Sulfolobales 中高度保守的乙酸盐/丙酸盐合成酶(Msed_1353)的活性位点中,一个单一的氨基酸取代(W424G)改变了其底物特异性,包括 4HB。4-HB CoA 合成酶的鉴定现在完成了 3HP/4HB 循环的一组酶。

相似文献

1
Role of 4-hydroxybutyrate-CoA synthetase in the CO2 fixation cycle in thermoacidophilic archaea.
J Biol Chem. 2013 Feb 8;288(6):4012-22. doi: 10.1074/jbc.M112.413195. Epub 2012 Dec 20.
4
3-Hydroxypropionyl-coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation.
J Bacteriol. 2008 Feb;190(4):1383-9. doi: 10.1128/JB.01593-07. Epub 2007 Dec 28.
10

引用本文的文献

1
Crystal structure of the 4-hydroxybutyryl-CoA synthetase (ADP-forming) from nitrosopumilus maritimus.
Commun Biol. 2024 Oct 21;7(1):1364. doi: 10.1038/s42003-024-06432-x.
2
Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments.
Nat Commun. 2024 Apr 15;15(1):3228. doi: 10.1038/s41467-024-47600-1.
3
Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO.
J Microbiol Biotechnol. 2023 Nov 28;33(11):1403-1411. doi: 10.4014/jmb.2306.06005. Epub 2023 Jun 26.
4
Carbon fixation pathways across the bacterial and archaeal tree of life.
PNAS Nexus. 2022 Oct 4;1(5):pgac226. doi: 10.1093/pnasnexus/pgac226. eCollection 2022 Nov.
5
Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways.
J Adv Res. 2023 May;47:75-92. doi: 10.1016/j.jare.2022.07.011. Epub 2022 Jul 30.
6
Microbial Utilization of Next-Generation Feedstocks for the Biomanufacturing of Value-Added Chemicals and Food Ingredients.
Front Bioeng Biotechnol. 2022 Apr 11;10:874612. doi: 10.3389/fbioe.2022.874612. eCollection 2022.
7
8
Fox Cluster determinants for iron biooxidation in the extremely thermoacidophilic Sulfolobaceae.
Environ Microbiol. 2022 Feb;24(2):850-865. doi: 10.1111/1462-2920.15727. Epub 2021 Aug 30.
9
()-3-Hydroxybutyryl-CoA Dehydrogenase From the Autotrophic 3-Hydroxypropionate/4-Hydroxybutyrate Cycle in .
Front Microbiol. 2021 Jul 5;12:712030. doi: 10.3389/fmicb.2021.712030. eCollection 2021.
10
The biology of thermoacidophilic archaea from the order Sulfolobales.
FEMS Microbiol Rev. 2021 Aug 17;45(4). doi: 10.1093/femsre/fuaa063.

本文引用的文献

3
Ecological aspects of the distribution of different autotrophic CO2 fixation pathways.
Appl Environ Microbiol. 2011 Mar;77(6):1925-36. doi: 10.1128/AEM.02473-10. Epub 2011 Jan 7.
4
Labeling and enzyme studies of the central carbon metabolism in Metallosphaera sedula.
J Bacteriol. 2011 Mar;193(5):1191-200. doi: 10.1128/JB.01155-10. Epub 2010 Dec 17.
5
Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota.
J Bacteriol. 2011 Mar;193(5):1201-11. doi: 10.1128/JB.01156-10. Epub 2010 Dec 17.
6
Autotrophic carbon fixation in archaea.
Nat Rev Microbiol. 2010 Jun;8(6):447-60. doi: 10.1038/nrmicro2365. Epub 2010 May 10.
7
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.
9
Adenylate-forming enzymes.
Curr Opin Struct Biol. 2009 Dec;19(6):666-71. doi: 10.1016/j.sbi.2009.09.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验