Suppr超能文献

参与谷氨酸转运体 EAAC1 与 Na(+) 结合的保守酸性氨基酸的质子化状态。

Protonation state of a conserved acidic amino acid involved in Na(+) binding to the glutamate transporter EAAC1.

机构信息

Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.

出版信息

ACS Chem Neurosci. 2012 Dec 19;3(12):1073-83. doi: 10.1021/cn300163p. Epub 2012 Oct 19.

Abstract

Substrate transport by glutamate transporters is coupled to the co-transport of 3 Na(+) ions and counter-transport of 1 K(+) ion. The highly conserved Asp454, which may be negatively charged, is of interest as its side chain may coordinate cations and/or contribute to charge compensation. Mutation to the nonionizable Asn resulted in a transporter that no longer catalyzed forward transport. However, Na(+)/glutamate exchange was still functional, as demonstrated by the presence of transient currents following rapid substrate application and voltage jumps. While the kinetics of Na(+)/glutamate exchange were slowed, the apparent valence (z) of the charge moved in EAAC1 D454N (0.71) was similar to that of EAAC1 WT (0.64). Valences calculated using the Poisson-Boltzmann equation were close to the experimental values for EAAC1 D454N (0.55), and with D454 protonated (0.45). In addition, pK(a) calculations performed for the bacterial homologue GltPh revealed a highly perturbed pK(a) (7.6 to >14) for D405 residue (analogous to D454), consistent with this site being protonated at physiological pH. In contrast to the D454N mutation, substitution to alanine resulted in a transporter that still bound glutamate, but could not translocate it. The results are consistent with molecular dynamics simulations, showing that the alanine but not the asparagine mutation resulted in defective Na(+) coordination. Our results raise the possibility that the protonated state of D454 supports transporter function.

摘要

谷氨酸转运体的底物转运与 3 个 Na(+)离子的共转运和 1 个 K(+)离子的反向转运偶联。高度保守的 Asp454,可能带负电荷,其侧链可能与阳离子配位和/或有助于电荷补偿,这一点很有趣。突变为非电离的 Asn 导致转运体不再催化正向转运。然而,Na(+)/谷氨酸交换仍然是功能性的,因为在快速施加底物和电压跃变后存在瞬时电流。虽然 Na(+)/谷氨酸交换的动力学变慢,但 EAAC1 D454N 的表观价数 (z)(0.71)与 EAAC1 WT 的价数 (0.64)相似。使用泊松-玻尔兹曼方程计算的价数接近 EAAC1 D454N 的实验值(0.55),并且 D454 质子化时为(0.45)。此外,对细菌同源物 GltPh 进行的 pK(a)计算显示,D405 残基(类似于 D454)的 pK(a)高度扰动(7.6 至>14),与该位点在生理 pH 下质子化一致。与 D454N 突变相反,取代为丙氨酸导致转运体仍能结合谷氨酸,但不能转运它。结果与分子动力学模拟一致,表明丙氨酸而非天冬酰胺突变导致 Na(+)配位缺陷。我们的结果提出了 D454 的质子化状态支持转运体功能的可能性。

相似文献

1
Protonation state of a conserved acidic amino acid involved in Na(+) binding to the glutamate transporter EAAC1.
ACS Chem Neurosci. 2012 Dec 19;3(12):1073-83. doi: 10.1021/cn300163p. Epub 2012 Oct 19.
4
A K/Na co-binding state: Simultaneous competitive binding of K and Na to glutamate transporters.
J Biol Chem. 2019 Aug 9;294(32):12180-12190. doi: 10.1074/jbc.RA119.009421. Epub 2019 Jun 24.
5
Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.
J Biol Chem. 2016 May 27;291(22):11852-64. doi: 10.1074/jbc.M116.722470. Epub 2016 Apr 4.
8
Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101.
J Biol Chem. 2010 Jun 4;285(23):17725-33. doi: 10.1074/jbc.M110.121798. Epub 2010 Apr 8.
9
Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1?
J Biol Chem. 2003 Jan 24;278(4):2585-92. doi: 10.1074/jbc.M207956200. Epub 2002 Nov 4.
10
Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1.
J Gen Physiol. 2001 Jun;117(6):547-62. doi: 10.1085/jgp.117.6.547.

引用本文的文献

1
Effect of intramolecular hydrogen-bond formation on the molecular conformation of amino acids.
Commun Chem. 2020 Jun 30;3(1):84. doi: 10.1038/s42004-020-0329-7.
3
Dissecting the role of glutamine in seeding peptide aggregation.
Comput Struct Biotechnol J. 2021 Mar 13;19:1595-1602. doi: 10.1016/j.csbj.2021.02.014. eCollection 2021.
4
Mechanism and potential sites of potassium interaction with glutamate transporters.
J Gen Physiol. 2020 Oct 5;152(10). doi: 10.1085/jgp.202012577.
5
Peptide Side-COOH Groups Have Two Distinct Conformations under Biorelevant Conditions.
J Phys Chem Lett. 2020 May 7;11(9):3466-3472. doi: 10.1021/acs.jpclett.0c00711. Epub 2020 Apr 21.
6
Allosteric gate modulation confers K coupling in glutamate transporters.
EMBO J. 2019 Oct 1;38(19):e101468. doi: 10.15252/embj.2019101468. Epub 2019 Sep 10.
7
Analysis of the quality of crystallographic data and the limitations of structural models.
J Gen Physiol. 2017 Dec 4;149(12):1091-1103. doi: 10.1085/jgp.201711852. Epub 2017 Oct 31.
8
Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.
J Biol Chem. 2016 May 27;291(22):11852-64. doi: 10.1074/jbc.M116.722470. Epub 2016 Apr 4.
9
Computational Studies of Glutamate Transporters.
Biomolecules. 2015 Nov 11;5(4):3067-86. doi: 10.3390/biom5043067.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Charge compensation mechanism of a Na+-coupled, secondary active glutamate transporter.
J Biol Chem. 2012 Aug 3;287(32):26921-31. doi: 10.1074/jbc.M112.364059. Epub 2012 Jun 15.
3
Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.
PLoS One. 2012;7(3):e33058. doi: 10.1371/journal.pone.0033058. Epub 2012 Mar 13.
4
Protonation of key acidic residues is critical for the K⁺-selectivity of the Na/K pump.
Nat Struct Mol Biol. 2011 Sep 11;18(10):1159-63. doi: 10.1038/nsmb.2113.
5
APBSmem: a graphical interface for electrostatic calculations at the membrane.
PLoS One. 2010 Sep 29;5(9):e12722. doi: 10.1371/journal.pone.0012722.
7
Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13912-7. doi: 10.1073/pnas.1006289107. Epub 2010 Jul 15.
8
Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101.
J Biol Chem. 2010 Jun 4;285(23):17725-33. doi: 10.1074/jbc.M110.121798. Epub 2010 Apr 8.
9
Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph).
Biochemistry. 2010 May 4;49(17):3511-3. doi: 10.1021/bi100430s.
10
The electrostatics of VDAC: implications for selectivity and gating.
J Mol Biol. 2010 Feb 26;396(3):580-92. doi: 10.1016/j.jmb.2009.12.006. Epub 2009 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验